Answer:
1st law--Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force. This is normally taken as the definition of inertia. The key point here is that if there is no net forceacting on an object (if all the external forces cancel each other out) then the object will maintain a constant velocity. If that velocity is zero, then the object remains at rest. If an external force is applied, the velocity will change because of the force.
2nd— The second law explains how the velocity of an object changes when it is subjected to an external force. The law defines a force to be equal to change in momentum(mass times velocity) per change in time. Newton also developed the calculus of mathematics, and the "changes" expressed in the second law are most accurately defined in differential forms. (Calculus can also be used to determine the velocity and location variations experienced by an object subjected to an external force.) For an object with a constant mass m, the second law states that the force F is the product of an object's mass and its acceleration a:
F = m * a
For an external applied force, the change in velocity depends on the mass of the object. A force will cause a change in velocity; and likewise, a change in velocity will generate a force. The equation works both ways.
3rd law-- The third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal force on object A. Notice that the forces are exerted on different objects. The third law can be used to explain the generation of lift by a wing and the production of thrust by a jet engine.
ANSWER:
What effect does a catalyst have on a system in equilibrium?
The system is unaffected.
~batmans wife dun dun dun....
Answer:
c) The distance between the balls increases.
Explanation:
If you drop the balls at the same time, regardless of their masses they accelerate equally, since they will be in free fall.
However, if you drop one of the balls earlier, then that ball will gain velocity, whereas the second ball has zero initial velocity. At the time the second ball is dropped, both balls have the same acceleration but different initial velocities.
According to the below kinematics equation:

The initial velocity of the first ball will make the difference, and the first ball will travel a greater distance than the second ball. Hence, their distance increases.
Answer:
Wavelength λ = 7.31 × 10^-37 m
Explanation:
From De Broglie's equation;
λ = h/mv
Where;
λ = wavelength in meters
h = plank's constant = 6.626×10^-34 m^2 kg/s
m = mass in kg
v = velocity in m/s
Given;
v = 24 mi/h
Converting to m/s
v = 24mi/h × 0.447 m/s ×1/(mi/h)
v = 10.73m/s
m = 84.5kg
Substituting the values into the equation;
λ = (6.626×10^-34 m^2 kg/s)/(84.5kg × 10.73m/s)
λ = 7.31 × 10^-37 m