Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.
<h2>
Answer: It is highly flammable.</h2>
Explanation:
Liquid oxygen is created from oxygen atoms that have been forced to assume the liquid state due to <u>compression (change of pressure) and temperature modification.
</u>
Specifically this is achieved by cooling the oxygen enough to change it to its liquid state. So,<u> as the temperature drops, the atoms move more slowly because they have less energy.
</u>
In this sense, in the liquid state it is easier to store and mobilize oxygen, taking into account that it is a highly flammable gas.
Answer:
Pressure on the molten rock lessens and the gases dissolved in rock can bubble and expand rapidly causing violent eruptions.
Explanation:
that's just how it works lol. hope this helps :]
The statement is <u>false</u> because the sky <u>can change </u>colors during sunsets, sun rises, etc. The sky is not always blue.
Answer:
For the car to move with constant velocity the additional force required is 
Explanation:
From the question we are told that
The net force of the car is 
Generally the total force acting on the car is the net force plus the force due to gravity acting in direction of the car (Let denote it as
)
So the total force acting on the car is mathematically represented as

Here this F representing the total force can be mathematically represented as

Now for constant velocity to be attained, the acceleration of the car will be zero
So at constant velocity

=> 
So

=> 
=> 