<h3><u>Answer;</u></h3>
C) primary cell wall → plasma membrane → cytoplasm → vacuole
<h3><u>Explanation;</u></h3>
- The cell wall is the protective outer layer of a plant cell, that gives the cell strength and structure, and also filters molecules that pass in and out of the cell.
- Cell membrane acts as a semi-permeable barrier separating the inside of the cell from the outside of the cell. The membrane allows regulation of what enters/exits the cell and how quickly.
- Cytoplasm is the jelly-like fluid that fills a cell. It is responsible for giving a cell its shape and also helps to fill out the cell and keeps organelles in their place.
- Vacuoles are membrane-bound sacs within the cytoplasm of a cell that function in several different ways. They functional in providing structural support, as well as serving functions such as storage, waste disposal, protection, and growth.
- <u>Potassium ion from the extracellular environment will move to the cell vacuole via the cell wall, the cell membrane and then via the cytoplasm to the vacuole.</u>
occurs in fluids
Explanation:
Convection is a mode of heat transfer that occurs in fluids.
There are three types of heat transfer:
conduction convection and radiation
- Conduction is a mode of heat transfer that involves an actual contact between the molecules of the medium. It occurs mostly in solids
- Radiation uses electromagnetic waves to transfer heat between two bodies or places. It does not require a material medium. The heat of the sun reaches us by radiation.
- Convection is a mode of heat transfer in fluids. It involves the density differences between hot and cold liquids and gases.
- Water boils by convection currents.
learn more:
Sun's energy brainly.com/question/1140127
#learnwithBrainly
Answer:
C12H22O11(aq) + H2O(l) —> 4C2H5OH(aq) + 4CO2(g)
Explanation:
When aqueous sugar (sucrose) react with water in the presence of yeast, the following products are obtained as shown in the equation below:
C12H22O11(aq) + H2O(l) —> C2H5OH(aq) + CO2(g)
Now, we shall balance the equation as follow:
There are a total of 24 atoms of H on the left side and 6 atoms on the right side. It can be balance by putting 4 in front of C2H5OH as shown below:
C12H22O11(aq) + H2O(l) —> 4C2H5OH(aq) + CO2(g)
There are a total of 9 atoms of C on the right side and 12 atoms on the left side. It can be balance by putting 4 in front of CO2 as shown below:
C12H22O11(aq) + H2O(l) —> 4C2H5OH(aq) + 4CO2(g)
Now the equation is balanced.
Answer:
Option D.
Explanation:
First we convert the given reactant masses into moles, using their respective molar masses:
- 4.00 g H₂ ÷ 2 g/mol = 2 mol H₂
- 6.20 g P₄ ÷ 124 g/mol = 0.05 mol P₄
0.05 moles of P₄ would react completely with (6*0.05) 0.3 moles of H₂. There are more H₂ moles than required, meaning H₂ is in excess and P₄ is the limiting reactant.
Now we<u> calculate how many PH₃ moles could be formed</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.05 mol P₄ *
= 0.2 mol PH₃
Finally we <u>convert 0.2 mol PH₃ into grams</u>, using its <em>molar mass</em>:
- 0.2 mol PH₃ * 34 g/mol = 6.8 g
So the correct answer is option D.
Answer:
The statements that correctly describes pyruvate dehydrogenase includes:
- Several copies each of E 1 and E 3 surround E 2.
-A regulatory kinase and phosphatase are part of the mammalian PDH complex.
-E 2 contains three domains.
Explanation:
Pyruvate dehydrogenase is a hydrolase key enzyme in glucose metabolism which converts pyruvate to acetyl- ChoA. It also forms a complex that catalyzes an irreversible reaction that is the entry point of pyruvate into the TCA cycle. Pyruvate dehydrogenase complex contains E1, E2 and E3 enzymes that transform pyruvate, NAD+, coenzyme A into acetyl-CoA, CO2, and NADH. Also, A regulatory kinase and phosphatase are part of the mammalian PDH complex and E 2 contains three domains.