Answer:
The heat that was used to melt the 15.0 grams of ice at 0°C is 4,950 Joules
Explanation:
The mass of ice in the beaker = 15.0 grams
The initial temperature of the ice = 0°C
The final temperature of the ice = 0°C
The latent heat of fusion of ice = 330 J/g
The heat required to melt a given mass of ice = The mass of the ice to be melted × The latent heat of fusion of ice
Therefore, the heat, Q, required to melt 15.0 g of ice = 15.0 g × 330 J/g = 4,950 J
The heat that was used to melt the 15.0 grams of ice = 4,950 Joules.
Answer:
[See Below]
Explanation:
I'd say 44 something. It's probably ml but I can't see what it says on the tube.
Answer:
1.8 × 10² s
Explanation:
Let's consider the reduction that occurs upon the electroplating of copper.
Cu²⁺(aq) + 2 e⁻ ⇒ Cu(s)
We will establish the following relationships:
- 1 g = 1,000 mg
- The molar mass of Cu is 63.55 g/mol
- When 1 mole of Cu is deposited, 2 moles of electrons circulate.
- The charge of 1 mole of electrons is 96,486 C (Faraday's constant).
- 1 A = 1 C/s
The time that it would take for 336 mg of copper to be plated at a current of 5.6 A is:

Answer:
C. When melted rock solidifies.
The given question is incomplete. The complete question is as follows.
A solution contains an unknown mass of dissolved barium ions. When sodium sulfate is added to the solution, a white precipitate forms. The precipitate is filtered and dried and then found to have a mass of 212 mg. What mass of barium was in the original solution? (Assume that all of the barium was precipitated out of solution by the reaction.)
Explanation:
When
and
are added then white precipitate forms. And, reaction equation for this is as follows.
It is given that mass (m) is 212 mg or 0.212 g (as 1 g = 1000 mg). Molecular weight of
is 233.43.
Now, we will calculate the number of moles as follows.
No. of moles = mass × M.W
= 
= 0.00091 mol of
Hence, it means that 0.00091 mol of
. Now, we will calculate the mass as follows.
Mass = moles × MW
=
= 0.124 grams or 124 mg of barium
Thus, we can conclude that mass of barium into the original solution is 124 mg.