Tangential acceleration of a point on the rim of the flywheel during this spin-up process is 0.2548 m/s².
Tangential acceleration is defined as the rate of change of tangential velocity of the matter in the circular path.
Given,
Radius of flywheel (r) = 1.96 cm = 0.0196m
Angular acceleration (α)= 13.0 rad/s²
The tangential acceleration formula is at=rα
where, α is the angular acceleration, and r is the radius of the circle.
using the formula; at=rα = (13.0 rad/s²) (0.0196m) = 0.2548 m/s².
The tangential acceleration is 0.2548 m/s².
Learn more about the Tangential acceleration with the help of the following link:
brainly.com/question/15743294
#SPJ4
One atom of silicon can properly be combined in a compound withtwo atoms of oxygen to produce silicon dioxide because silicon is very similar to carbon, as it is in the same group as carbon is in, therefore, it is able to make four bonds.
Moreover, Silicon has 4 valence electrons. In order to form an ionic bond, silicon<span> would have to gain or lose 4 electrons.</span>
Answer:C2H4
Explanation:
Olefins are alkenes, c2h4 is the simplest member called ethene
The acceleration of the car is 6.86 m/s² and the time taken for the car to stop is 3.64 s.
The given parameters;
- mass of the car, m = 1400 kg
- Initial velocity of the car, u = 25 m/s
- coefficient of kinetic friction, μ = 0.7
The acceleration of the car is calculated as follows;
a = μg
a = 0.7 x 9.8
a = 6.86 m/s²
The time taken for the car to stop is calculated by using Newton's second law of motion;
F = ma

Thus, the acceleration of the car is 6.86 m/s² and the time taken for the car to stop is 3.64 s.
Learn more here:brainly.com/question/19887955