Answer:
<em>a </em>- 13
Step-by-step explanation:
a- 13 because you are taking 13 away from a
Answer:
The solutions are linearly independent because the Wronskian is not equal to 0 for all x.
The value of the Wronskian is 
Step-by-step explanation:
We can calculate the Wronskian using the fundamental solutions that we are provided and their corresponding the derivatives, since the Wroskian is defined as the following determinant.

Thus replacing the functions of the exercise we get:

Working with the determinant we get

Thus we have found that the Wronskian is not 0, so the solutions are linearly independent.
1) For each of these, keep in mind vertex form: f(x)=a(x-h)^2+k. With vertex form, a is the direction and width, h is the horizontal placement of the vertex, and k is the vertical placement. For the first one, notice that "a" is positive 1, so it faces up. This means that D, the one facing down, cannot be the answer. "h" is 1, so we will move the vertex to the right one unit (keep in mind (x-h), so if it were to be (h+3) you would move it to the left, not the right). "k" is -3, so we would move the vertex down 3 units. That said, the vertex should be at (1,-3) so the answer is C, or the one right below the first one.
2) The graph of f(x)=|2x| translated 5 units to the left means that h is equal to -5. When we plug -5 into vertex form, it should look like: g(x)=|2(x+5)|. The answer to this is A.
3) The equation for reflection on the x axis is f(x)=-a(x-h)+k. So, if the parent function f(x)=4|x| were to be reflected on the x axis, the function would look like this: g(x)=-4|x|. The answer to this should be B.
4) Since h=1 and k=0 in the function f(x)=-3|x-1|, the vertex will be (1,0).
5) This can also be written as g(x)=|x|-3. This means that k=-3, and will be a vertical translation of 3 units down.
Answer:
the root is -2 , 0
Step-by-step explanation: