Answer:
28/33
Step-by-step explanation:
We first let 0.84 be x.
Since x is recurring in 2 decimal places, we multiply it by 100.
100x=84.84
Next, we subtract them.
100x−x=84.84−0.84
99x=84
Lastly, we divide both sides by 99 to get x as a fraction.
x=84/99
=28/33
Let ????C be the positively oriented square with vertices (0,0)(0,0), (2,0)(2,0), (2,2)(2,2), (0,2)(0,2). Use Green's Theorem to
bonufazy [111]
Answer:
-48
Step-by-step explanation:
Lets call L(x,y) = 10y²x, M(x,y) = 4x²y. Green's Theorem stays that the line integral over C can be calculed by computing the double integral over the inner square of Mx - Ly. In other words

Where Mx and Ly are the partial derivates of M and L with respect to the x variable and the y variable respectively. In other words, Mx is obtained from M by derivating over the variable x treating y as constant, and Ly is obtaining derivating L over y by treateing x as constant. Hence,
- M(x,y) = 4x²y
- Mx(x,y) = 8xy
- L(x,y) = 10y²x
- Ly(x,y) = 20xy
- Mx - Ly = -12xy
Therefore, the line integral can be computed as follows

Using the linearity of the integral and Barrow's Theorem we have

As a result, the value of the double integral is -48-
Answer:
If Charlotte goes on 15 rides, should would have to pay a total of $105
Step-by-step explanation:
Admission $30
Price Per Ride $5
r = rides
? = 30 + 5r
? = 30 + 5(15)
? = 30 + 75
? = 105
Answer:
Step-by-step explanation:
I will give you equations in slope intercept form
1.
y=-x-1
2.
y= -2x - 6
Answer:
The probability is 0.0052
Step-by-step explanation:
Let's call A the event that the four cards are aces, B the event that at least three are aces. So, the probability P(A/B) that all four are aces given that at least three are aces is calculated as:
P(A/B) = P(A∩B)/P(B)
The probability P(B) that at least three are aces is the sum of the following probabilities:
- The four card are aces: This is one hand from the 270,725 differents sets of four cards, so the probability is 1/270,725
- There are exactly 3 aces: we need to calculated how many hands have exactly 3 aces, so we are going to calculate de number of combinations or ways in which we can select k elements from a group of n elements. This can be calculated as:

So, the number of ways to select exactly 3 aces is:

Because we are going to select 3 aces from the 4 in the poker deck and we are going to select 1 card from the 48 that aren't aces. So the probability in this case is 192/270,725
Then, the probability P(B) that at least three are aces is:

On the other hand the probability P(A∩B) that the four cards are aces and at least three are aces is equal to the probability that the four card are aces, so:
P(A∩B) = 1/270,725
Finally, the probability P(A/B) that all four are aces given that at least three are aces is:
