Answer:
- 8) 4 + 2q²/p² - 4r/p + r²/p²
- 9) (3/4, -9/4)
- 10) (3/8, 41/16)
Step-by-step explanation:
8. ============
Given
- α and β are roots of px² + qx + r = 0
The sum of the roots is α + β = -q/p, the product of then roots αβ = r/p
- (2 + α²)(2 + β²) =
- 4 + 2(α² + β²) + (αβ)² =
- 4 + 2((α + β)² -2αβ) + (αβ)² =
- 4 + 2((-q/p)² - 2r/p) + (r/p)² =
- 4 + 2q²/p² - 4r/p + r²/p²
------------------------------
9. ============
<u>Given function</u>
The minimum point is reached at vertex
<u>The vertex is:</u>
- x = -b/2a
- x = -(-3)/2*2 = 3/4
<u>The corresponding y-coordinate is:</u>
- y = 2(3/4)² - 3(3/4) - 1 = 9/8 - 9/4 - 1 = 1/8(9 - 18 - 9) = - 18/8 = - 9/4
<u>So the point is: </u>
---------------
10. ============
<u>Given function</u>
The maximum is reached at vertex
<u>The vertex is:</u>
- x = -b/2a
- x = -(-3)/2(-4) = -3/8
<u>The corresponding y-coordinate is:</u>
- y = 2 - 3(-3/8) -4(-3/8)² = 2 + 9/8 - 9/16 = 1/16(32 + 18 - 9) = 41/16
<u>So the maximum point is:</u>
Answer:
108
Step-by-step explanation:
<span>Area = Length * Width
So Width = Area/Length = 756/108 = 7 inches wide</span><span>
</span>
Answer:
1 < x < 19
Step-by-step explanation:
Triangle Inequality Theorem
Let y and z be two of the side lengths of a triangle. The length of the third side x cannot be any number. It must satisfy all the following restrictions:
x + y > z
x + z > y
y + z > x
Combining the above inequalities, and provided y>z, the third size must satisfy:
y - z < x < y + z
We are given the measures y=10, z=9. The third side must satisfy:
10 - 9 < x < 10 + 9
1 < x < 19
.06*120=$7.20
.005*44=$0.22