Answer:
1.06 m
Explanation:
Since the charge is at the centre of two concentric spheres, we use the formula for electric potential due to a point charge. V = kq/r. Let r₁ be the radius of the sphere with potential, V₁ = 200 V and r₂ be the radius of the sphere with potential, V₂ = 82.0 V. From V = kq/r, r = kq/V. So that r₁ = kq/V₁ and r₂ = kq/V₂. The magnitude of the difference r₁ - r₂ is the distance between the two surfaces. q the charge equals 1.63 × 10⁻⁸ C
r₂ - r₁ = kq/V₂ - kq/V₁ = kq(1/V₂ - 1/V₁) = 1.63 × 10⁻⁸ × 9 × 10⁹ (1/82 -1/200) m = 1.63 × 10⁻⁸ × 9 × 10⁹ (0.0122 - 0.005) = 1.63 × 10⁻⁸ × 9 × 10⁹(0.0072) m = 1.06 m
The distance between them is 1.06 m
Answer:
135 m
Explanation:
Speed = 45 m/s, time = 3 second
The formula for the distance is given by
Distance = speed x time = 45 x 3 = 135 m
Answer:
See explanation
Explanation:
a) maximum height of a projectile = u sin^2θ/2g
H= 600 × (sin 30)^2/2 × 10
H= 7.5 m
b) Time of flight
t= 2u sinθ/g
t= 2 × 600 sin 30/10
t= 60 seconds
Range
R= u^2sin2θ/g
R= (600)^2 × sin2(30)/10
R= 31.2 m
Answer:
37.545 m/s
Explanation:
f' = Actual frequency of horn = 269 Hz
f = Observed frequency of horn = 290 Hz
v = Speed of sound in air = 343 m/s
= Speed of second train = 13.7 m/s
= Speed of first train
From Doppler effect we have

The speed of the first train is 37.545 m/s
That's the description of the SOLID phase of matter.