Answer:
A) 1.67 x 10 ⁻⁶ m/s
B)5.59 x
%
Explanation:
A)
Given:
d = 5.0 km,
mₐ = 2.5 x
kg
u₁ = 4.0 x 10⁴ m/s
= 5.98 x 10 ²⁴ kg
Solve using kinetic conserved energy
mₐ x u₁ +
x u₂ = uₓ x (mₐ +
)
(2.5 x
) (4.0 x 10⁴ )+ (5.98 x 10 ²⁴ )(0) = uₓ x (2.5 x
+ 5.98 x 10 ²⁴ )
uₓ = ( 2.5 x
x 4.0 x 10⁴ ) / (2.5 x
+ 5.98 x 10 ²⁴ )
uₓ = 1.67 x 10 ⁻⁶ m/s
B) Assuming earth radius as a R = 1.5 x 10 ¹¹ m
t = 365 days x 24 hr / 1 day x 60 minute / 1 hr x 60s / 1 minute = 31536000 s
t = 31536000 s
D = 2 π R = 2 π( 1.5 x 10 ¹¹ )
D = 9.4247 x 10 ¹¹ m
u₂ = D / t = 9.4247 x 10 ¹¹ / 31536000
u₂ = 29885.775 m/s
% = ( 1.67 x 10 ⁻⁶ m/s ) / (29885.775 m/s) x 100
% = 5.59 x
%
Answer:
Its momentum is multiplied by a factor of 1.25
Explanation:
First, we <u>calculate the initial velocity of the object</u>:
- 59.177 J = 0.5 * 3.4 kg * v₁²
With that velocity we can <u>calculate the initial momentum of the object</u>:
Then we <u>calculate the velocity of the object once its kinetic energy has increased</u>:
- (59.177 J) * 1.57 = 0.5 * 3.4 kg * v₂²
And <u>calculate the second momentum of the object</u>:
Finally we <u>calculate the factor</u>:
Answer:
(E) none of these.
Explanation:
first that all we need the meaning of a Watt
<em>" is a unit of power. In the International System of Units (SI) it is defined as a derived unit of 1 </em><em>joule</em><em> per </em><em>second</em><em>,[1] and is used to quantify the rate of </em><em>energy</em><em> transfer." </em>
<em>definition taken from wikipedia.org</em>
now with this concept we have that:
100 W means 100 J/s .Therefore it uses 100 J energy per second
therefore on the answers don't mention this three terms together
Joules, energy and second so the answer must be.
(E) None of these
A rolling friction jdisns
From the law of the lever:
<span>mechanical advantage= input arm : output arm
input arm- a
output arm-b
</span>

<span>Input arm is equal 4,8m</span>