Answer:
Newton's Third Law
Explanation:
Newton's third law
Newton's third law: “for every action, there is an equal and opposite reaction.” This is where you get the bounce. When you push down on the trampoline (or fall downward onto the trampoline bed), Newton's third law says that an equal and opposite reaction pushes back.
:)
Answer:
23.49m
Explanation:
Distance = velocity x time
8.7 x 2.7 = 23.49m
Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves.
To solve this problem we will apply the concept related to destructive interference (from the principle of superposition). This concept is understood as a superposition of two or more waves of identical or similar frequency that, when interfering, create a new wave pattern of less intensity (amplitude) at a point called a node. Mathematically it can be described as

Where,
d = Path difference
= wavelength
n = Any integer which represent the number of repetition of the spectrum
In this question the distance between the two source will be minimum for the case of minimum path difference, then n= 1



Therefore the minimum distance that should you separate two sources emitting the same waves is 2.5mm