Answer:
The crate's coefficient of kinetic friction on the floor is 0.23.
Explanation:
Given that,
Mass of the crate, m = 300 kg
One worker pushes forward on the crate with a force of 390 N while the other pulls in the same direction with a force of 320 N using a rope connected to the crate.
The crate slides with a constant speed. It means that the net force acting on it is 0. Net force acting on it is given by :

So, the crate's coefficient of kinetic friction on the floor is 0.23.
The speed of a wave is determined by the product of the frequency and the wavelength; we already have the wavelength and the frequency, so all we need to do is multiply them by each other and use our proper unit of measure.
Velocity (speed) = Frequency x Wavelength
V = 250 x 6
V = 1500
Your answer is 1500 m/s.
I hope this helps!
Break the circuit and apace a meter actually within the circuit.
Angel ! You have a formula, and you have an example that's
completely worked out. The ONLY POSSIBLE reason that you
could still need help is that you're letting math scare you.
I'll do 'A' for you, 'B' most of the way, and get 'C' set up.
If THAT's not enough for you to run with and finish them all,
then you and I should both be embarrassed.
Write the formula on the wall:
°F = (9/5) °C + 32°
A). Convert 35° C °F = (9/5)(35°) + 32°
(9/5)(35) = 63 °F = 63° + 32°
°F = 95°
____________________________________
B). Convert 80°F to °C
The formula: °F = (9/5) °C + 32°
°F = 80 80 = (9/5)°C + 32
Subtract 32 from each side: 48 = (9/5)°C
Multiply each side by 5 : 240 = (9) C
Now you take over:
_________________________________________
C). Convert 15°C to °F.
The formula: °F = (9/5) °C + 32°
°C = 15 °F = (9/5) 15° + 32
(9/5) (15) = 27
Go ! °F =