Answer:
ohh i don't know the answer
Answer:
c. f(x) x+1/x-1
Step-by-step explanation:
To answer this question, we need to check each answer one by one until we find the right one.
y = (x+6)/(x-6)
switch x and y
x = (y+6)/(y-6)
solve for y
x(y-6) = y+6
xy - 6x = y+6
y(x-1) = 6x+6
y = (6x+6) /(x-1) = 6(x+1)/(x-1)
f^-1(x) = 6(x+1)/(x-1)
y = (x+2)/(x-2)
switch x and y
x = (y+2)/(y-2)
solve for y
x(y-2) = y+2
xy -2x = y+2
y(x-1) = 2x+2
y = (2x+2)/(x-1)
f^-1(x) = 2(x+1)/(x-1)
y = (x+1)/(x-1) ------ correct one
switch x and y
x = (y+1)/(y-1)
solve for y
x(y-1) = y+1
xy - x = y+1
y(x-1) = x+1
y = (x+1)/(x-1)
f^-1(x) = (x+1)/(x-1)
f(x) = f^-1(x)
If s=2, then t= 2(2)-3 = 1
T=2(4)-3= 5
T=2(6)-3= 9
T=2(8)-3=13
let's convert firstly the mixed fractions to improper fractions and then add up.
![\bf \stackrel{mixed}{2\frac{3}{8}}\implies \cfrac{2\cdot 8+3}{8}\implies \stackrel{improper}{\cfrac{19}{8}}~\hfill \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}} \\\\\\ \stackrel{mixed}{2\frac{7}{8}}\implies \cfrac{2\cdot 8+7}{8}\implies \stackrel{improper}{\cfrac{23}{8}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B3%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%208%2B3%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B8%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B7%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%208%2B7%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B23%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
We have z - 8 = 4 or z - 8 = -4;
Then, z = 12 or z = 4;
The correct answer is d).
Step-by-step explanation: