Yes barium carbonate forms a ppt. it is insoluble in water
Answer:
which produces hydrogen ion in water, called acid. A substance which produces hydroxide ion in water, called base. According to Bronsted-Lowry theory, an acid is proton donor and base is proton acceptor. Actually, Arrhenius theory is limited only to the aqueous solution.
Explanation:
Answer:
Option C is correct.
The minimum amount of material that is needed for a fission reaction to keep going is called the critical mass.
Explanation:
Nuclear fission is the term used to describe the breakdown of the nucleus of a parent isotope into daughter nuclei.
Normally, the initial energy supplied for nuclear fission is the energy to initiate the first breakdown of the first set of radioactive isotopes that breakdown. Once that happens, the energy released from the first breakdown is enough to drive further breakdown of numerous isotopas in a manner that leads to more energy generation.
But, for this to be able to be sustained and not fizzle out, a particular amount of radioactive material to undergo nuclear fission must be present. This particular amount is termed 'critical mass'
Hope this Helps!!!
The amount of Silicon left after 300 years is 75g
It is given that the initial amount of Si is 100 times decay is 300 years and the half-life of Silicon is 710 years.
The radioactive decay formula is given by,
A = A₀ x 2^(-t/h);
where;
A is the resulting amount after t time, Ao is the initial amt (t=0),t is the time of decay, and h is the half-life of the substance.
On substituting the values from the given we get,
A = 100x2^(-300/710)
A = 100 x 0.746112347
A = 74.6112347 grams left after 300 yrs
Therefore, the number of grams of silicon left after 300 years is 74.6112347g. This value could be rounded off to 75 grams as in the whole number
To know more about half-life, click below:
brainly.com/question/1160651
#SPJ4
Answer:
See explanation
Explanation:
If we look at the electron configuration closely, we will discover that the element must have had a ground state electron configuration of 2,4.
This is because, the innermost shell usually holds two electrons while the outer shells hold eight electrons each. The four electrons must be accommodated in the second shell in the ground state configuration of the compound.
However, when the atom is excited, one electron from this shell may move to the third shell to give the excited state configuration 2-3-1 as shown in the question.