Answer:
A .cos(x)<1
Step-by-step explanation:
According to the first inequality
cos(x)<1
x < arccos 1
x<0
This therefore does not have a solution within the range 0 ≤ x ≤ 2pi
x cannot be leas than 0. According to the range not value, 0≤x which is equivalent to x≥0. Thus means otvis either x = 0 or x> 0.
For the second option
.cos(x/2)<1
x/2< arccos1
x/2<0
x<0
This inequality also has solution within the range 0 ≤ x ≤ 2pi since 0 falls within the range of values.
For the inequality csc(x)<1
1/sin(x) < 1
1< sin(x)
sinx>1
x>arcsin1
x>90°
x>π/2
This inequality also has solution within the range 0 ≤ x ≤ 2pi since π/2 falls within the range of values
For the inequality csc(x/2)<1
1/sin(x/2) < 1
1< sin(x/2)
sin(x/2)> 1
x/2 > arcsin1
X/2 > 90°
x>180°
x>π
This value of x also has a solution within the range.
Therefore option A is the only inequality that does not have a solution with the range.
Answer:
Step-by-step explanation:
Using the cosine theorem:



The angle is 114.014 degrees if we substract 90 degrees it means that at point L the plane changed its angle by 24 degrees
Hello :
<span>2y+4=3(2x-6)
2y+4 -4 =3(2x-6)-4
2y = 6x-18-4
2y =6x-22
y =(6x-22)/2
y= 3x-11</span>