Answer:
You can use the midpoint formula.
Method:
MAB = (Ax+Bx)/2 ; (Ay+By)/2
Substitute in what you have:
(2;4) = (Ax+3)/2 ; (Ay+7)/2
Because we know the x coordinate of the midpoint, we can assume that:
2 = (Ax+3)/2
And now solve for Ax:
4 = Ax+3
Ax = 1
Because we know the y coordinate of the midpoint, we can assume that:
4 = (Ay+7)/2
And now solve for Ay:
8 = Ay+7
Ay = 1
Therefore A(1;1)
Answer:
10.84
Step-by-step explanation:
First we multiply
1.4+(3.2×2.95)
1.4+9.44=
=10.84
Answer: 120[4(x^6 + x^3 + x^4 + x) +7(x^7 + x^4 + x^5 + x^2)]
Step-by-step explanation:
=24x(x^2 + 1)4(x^3 + 1)5 + 42x^2(x^2 + 1)5(x^3 + 1)4
Remove the brackets first
=[(24x^3 +24x)(4x^3 + 4)]5 + [(42x^4 +42x^2)(5x^3 + 5)4]
=[(96x^6 + 96x^3 +96x^4 + 96x)5] + [(210x^7 + 210x^4 + 210x^5 + 210x^2)4]
=(480x^6 + 480x^3 + 480x^4 + 480x) + (840x^7 + 840x^4 + 840x^5 + 840x^2)
Then the common:
=[480(x^6 + x^3 + x^4 + x) + 840(x^7 + x^4 + x^5 + x^2)]
=120[4(x^6 + x^3 + x^4 + x) +7(x^7 + x^4 + x^5 + x^2)]
Answer:
14
Step-by-step explanation:
If you graph out the parabola, you look for the maximum height of the parabola and it is 14.