Answer:
(-4, -5) it gives the answer in the question
Step-by-step explanation:
For this case we have the following expression:
![\frac {216 ^ {n-2}} {(\frac {1} {36}) ^ {3n}} = 216](https://tex.z-dn.net/?f=%5Cfrac%20%7B216%20%5E%20%7Bn-2%7D%7D%20%7B%28%5Cfrac%20%7B1%7D%20%7B36%7D%29%20%5E%20%7B3n%7D%7D%20%3D%20216)
We multiply both sides by: ![(\frac {1} {36}) ^ {3n}](https://tex.z-dn.net/?f=%28%5Cfrac%20%7B1%7D%20%7B36%7D%29%20%5E%20%7B3n%7D)
![216 ^ {n-2} = 216 * (\frac {1} {36}) ^ {3n}](https://tex.z-dn.net/?f=216%20%5E%20%7Bn-2%7D%20%3D%20216%20%2A%20%28%5Cfrac%20%7B1%7D%20%7B36%7D%29%20%5E%20%7B3n%7D)
We divide both sides by 216:
![\frac {216 ^ {n-2}} {216} = (\frac {1} {36}) ^ {3n}](https://tex.z-dn.net/?f=%5Cfrac%20%7B216%20%5E%20%7Bn-2%7D%7D%20%7B216%7D%20%3D%20%28%5Cfrac%20%7B1%7D%20%7B36%7D%29%20%5E%20%7B3n%7D)
To divide powers of the same base, we place the same base and subtract the exponents:
![216 ^ {n-2-1} = (\frac {1} {36}) ^ {3n}\\216 ^ {n-3} = (\frac {1} {36}) ^ {3n}](https://tex.z-dn.net/?f=216%20%5E%20%7Bn-2-1%7D%20%3D%20%28%5Cfrac%20%7B1%7D%20%7B36%7D%29%20%5E%20%7B3n%7D%5C%5C216%20%5E%20%7Bn-3%7D%20%3D%20%28%5Cfrac%20%7B1%7D%20%7B36%7D%29%20%5E%20%7B3n%7D)
Rewriting:
![(6 ^ 3) ^ {n-3} = (\frac {1} {6 ^ 2}) ^ {3n}\\6 ^ {3n-9} = \frac {1} {6 ^ {6n}}\\6^{ 3n-9} * 6^{ 6n} = 1](https://tex.z-dn.net/?f=%286%20%5E%203%29%20%5E%20%7Bn-3%7D%20%3D%20%28%5Cfrac%20%7B1%7D%20%7B6%20%5E%202%7D%29%20%5E%20%7B3n%7D%5C%5C6%20%5E%20%7B3n-9%7D%20%3D%20%5Cfrac%20%7B1%7D%20%7B6%20%5E%20%7B6n%7D%7D%5C%5C6%5E%7B%203n-9%7D%20%2A%206%5E%7B%206n%7D%20%3D%201)
To multiply powers of the same base, we place the same base and add the exponents:
![6^{ 3n-9 + 6n} = 1\\6^{ 9n-9} = 1](https://tex.z-dn.net/?f=6%5E%7B%203n-9%20%2B%206n%7D%20%3D%201%5C%5C6%5E%7B%209n-9%7D%20%3D%201)
We know that any number raised to zero is 1, ![a ^ 0 = 1.](https://tex.z-dn.net/?f=a%20%5E%200%20%3D%201.)
So, for equality to be true:
![9n-9 = 0\\9n = 9\\n = \frac {9} {9}\\n = 1](https://tex.z-dn.net/?f=9n-9%20%3D%200%5C%5C9n%20%3D%209%5C%5Cn%20%3D%20%5Cfrac%20%7B9%7D%20%7B9%7D%5C%5Cn%20%3D%201)
Answer:
![n = 1](https://tex.z-dn.net/?f=n%20%3D%201)
Answer:
$690.86
Step-by-step explanation:
100% from the original cost is: 2 x 863.57 = $1,727.14
40/100 = X/1727.14 (40 percent is what of 1,727.40) (%/100 = is/of)
(40 * 1,727.14) / 100 = $ 690.86
Answer:
Part A:
The probability that all of the balls selected are white:
![P(A)=\frac{1}{6}(\frac{1}{3}+\frac{2}{21}+\frac{2}{91}+\frac{1}{273}+\frac{1}{3003}+0)\\ P(A)=\frac{5}{66}=0.075757576](https://tex.z-dn.net/?f=P%28A%29%3D%5Cfrac%7B1%7D%7B6%7D%28%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B2%7D%7B21%7D%2B%5Cfrac%7B2%7D%7B91%7D%2B%5Cfrac%7B1%7D%7B273%7D%2B%5Cfrac%7B1%7D%7B3003%7D%2B0%29%5C%5C%20%20%20%20%20%20P%28A%29%3D%5Cfrac%7B5%7D%7B66%7D%3D0.075757576)
Part B:
The conditional probability that the die landed on 3 if all the balls selected are white:
![P(D_3|A)=\frac{\frac{2}{91}*\frac{1}{6}}{\frac{5}{66} } \\P(D_3|A)=\frac{22}{455}=0.0483516](https://tex.z-dn.net/?f=P%28D_3%7CA%29%3D%5Cfrac%7B%5Cfrac%7B2%7D%7B91%7D%2A%5Cfrac%7B1%7D%7B6%7D%7D%7B%5Cfrac%7B5%7D%7B66%7D%20%7D%20%5C%5CP%28D_3%7CA%29%3D%5Cfrac%7B22%7D%7B455%7D%3D0.0483516)
Step-by-step explanation:
A is the event all balls are white.
D_i is the dice outcome.
Sine the die is fair:
for i∈{1,2,3,4,5,6}
In case of 10 black and 5 white balls:
![P(A|D_1)=\frac{5_{C}_1}{15_{C}_1} =\frac{5}{15}=\frac{1}{3}](https://tex.z-dn.net/?f=P%28A%7CD_1%29%3D%5Cfrac%7B5_%7BC%7D_1%7D%7B15_%7BC%7D_1%7D%20%3D%5Cfrac%7B5%7D%7B15%7D%3D%5Cfrac%7B1%7D%7B3%7D)
![P(A|D_2)=\frac{5_{C}_2}{15_{C}_2} =\frac{10}{105}=\frac{2}{21}](https://tex.z-dn.net/?f=P%28A%7CD_2%29%3D%5Cfrac%7B5_%7BC%7D_2%7D%7B15_%7BC%7D_2%7D%20%3D%5Cfrac%7B10%7D%7B105%7D%3D%5Cfrac%7B2%7D%7B21%7D)
![P(A|D_3)=\frac{5_{C}_3}{15_{C}_3} =\frac{10}{455}=\frac{2}{91}](https://tex.z-dn.net/?f=P%28A%7CD_3%29%3D%5Cfrac%7B5_%7BC%7D_3%7D%7B15_%7BC%7D_3%7D%20%3D%5Cfrac%7B10%7D%7B455%7D%3D%5Cfrac%7B2%7D%7B91%7D)
![P(A|D_4)=\frac{5_{C}_4}{15_{C}_4} =\frac{5}{1365}=\frac{1}{273}](https://tex.z-dn.net/?f=P%28A%7CD_4%29%3D%5Cfrac%7B5_%7BC%7D_4%7D%7B15_%7BC%7D_4%7D%20%3D%5Cfrac%7B5%7D%7B1365%7D%3D%5Cfrac%7B1%7D%7B273%7D)
![P(A|D_5)=\frac{5_{C}_5}{15_{C}_5} =\frac{1}{3003}=\frac{1}{3003}](https://tex.z-dn.net/?f=P%28A%7CD_5%29%3D%5Cfrac%7B5_%7BC%7D_5%7D%7B15_%7BC%7D_5%7D%20%3D%5Cfrac%7B1%7D%7B3003%7D%3D%5Cfrac%7B1%7D%7B3003%7D)
![P(A|D_6)=\frac{5_{C}_6}{15_{C}_6} =0](https://tex.z-dn.net/?f=P%28A%7CD_6%29%3D%5Cfrac%7B5_%7BC%7D_6%7D%7B15_%7BC%7D_6%7D%20%3D0)
Part A:
The probability that all of the balls selected are white:
![P(A)=\sum^6_{i=1} P(A|D_i)P(D_i)](https://tex.z-dn.net/?f=P%28A%29%3D%5Csum%5E6_%7Bi%3D1%7D%20P%28A%7CD_i%29P%28D_i%29)
![P(A)=\frac{1}{6}(\frac{1}{3}+\frac{2}{21}+\frac{2}{91}+\frac{1}{273}+\frac{1}{3003}+0)\\ P(A)=\frac{5}{66}=0.075757576](https://tex.z-dn.net/?f=P%28A%29%3D%5Cfrac%7B1%7D%7B6%7D%28%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B2%7D%7B21%7D%2B%5Cfrac%7B2%7D%7B91%7D%2B%5Cfrac%7B1%7D%7B273%7D%2B%5Cfrac%7B1%7D%7B3003%7D%2B0%29%5C%5C%20%20%20%20%20%20P%28A%29%3D%5Cfrac%7B5%7D%7B66%7D%3D0.075757576)
Part B:
The conditional probability that the die landed on 3 if all the balls selected are white:
We have to find ![P(D_3|A)](https://tex.z-dn.net/?f=P%28D_3%7CA%29)
The data required is calculated above:
![P(D_3|A)=\frac{P(A|D_3)P(D_3)}{P(A)}\\ P(D_3|A)=\frac{\frac{2}{91}*\frac{1}{6}}{\frac{5}{66} } \\P(D_3|A)=\frac{22}{455}=0.0483516](https://tex.z-dn.net/?f=P%28D_3%7CA%29%3D%5Cfrac%7BP%28A%7CD_3%29P%28D_3%29%7D%7BP%28A%29%7D%5C%5C%20P%28D_3%7CA%29%3D%5Cfrac%7B%5Cfrac%7B2%7D%7B91%7D%2A%5Cfrac%7B1%7D%7B6%7D%7D%7B%5Cfrac%7B5%7D%7B66%7D%20%7D%20%5C%5CP%28D_3%7CA%29%3D%5Cfrac%7B22%7D%7B455%7D%3D0.0483516)
Answer:
Interpreting as: x^2/3=x^1/3+4=6 A
Input:
x^2/3 = x^(1/3) + 4 = 6 A