Answer:
When her hands extends, her momen of inertia is
.
Explanation:
Given that,
Initial angular speed, 
Initial moment of inertia, 
Final angular speed, 
Initially, a skater rotates with her arms crossed and finally she extends her arms. The momentum remains conserved. Using the conservation of momentum as :

is final moment of inertia

So, when her hands extends, her momen of inertia is
. Hence, this is the required solution.
Refraction refers to C. the bending of light rays when they pass from one medium into another
Explanation:
Refraction is a phenomenon typical of wave. Refraction occurs when a wave travels through the boundary between two different mediums. When this occurs, the wave changes speed, wavelength and direction (but the frequency remains the same).
In particular, the direction of the refracted ray is determined by Snell's Law:

where
is the index of refraction of the 1st medium
is the index of refraction of the 2nd medium
is the angle of incidence, which is the angle between the direction of the incident wave and the normal to the boundary
is the angle of refraction, which is the angle between the direction of the refracted wave and the normal to the boundary
Therefore, the correct description of refraction is
C. the bending of light rays when they pass from one medium into another
Learn more about refraction:
brainly.com/question/3183125
brainly.com/question/12370040
#LearnwithBrainly
Answer:
a) F = 64.30 N, b) θ = 121.4º
Explanation:
Forces are vector quantities so one of the best methods to add them is to decompose each force and add the components
let's use trigonometry
Force F1
sin 170 = F_{1y} / F₁
cos 170 = F₁ₓ / F₁
F_{1y} = F₁ sin 170
F₁ₓ = F₁ cos 170
F_{1y} = 100 sin 170 = 17.36 N
F₁ₓ = 100 cos 170 = -98.48 N
Force F2
sin 30 = F_{2y} / F₂
cos 30 = F₂ₓ / F₂
F_{2y} = F₂ sin 30
F₂ₓ = F₂ cos 30
F_{2y} = 75 sin 30 = 37.5 N
F₂ₓ = 75 cos 30 = 64.95 N
the resultant force is
X axis
Fₓ = F₁ₓ + F₂ₓ
Fₓ = -98.48 +64.95
Fₓ = -33.53 N
Y axis
F_y = F_{1y} + F_{2y}
F_y = 17.36 + 37.5
F_y = 54.86 N
a) the magnitude of the resultant vector
let's use Pythagoras' theorem
F = Ra Fx ^ 2 + Fy²
F = Ra 33.53² + 54.86²
F = 64.30 N
b) the direction of the resultant
let's use trigonometry
tan θ’= F_y / Fₓ
θ'= 
θ'= tan⁻¹ (54.86 / (33.53)
θ’= 58.6º
this angle is in the second quadrant
The angle measured from the positive side of the x-axis is
θ = 180 -θ'
θ = 180- 58.6
θ = 121.4º
I think the answer would be C