30 beats/1min = 30 beats/60 sec = .5 beat/sec = 1/2 Hz
740 Hz - 1/2 Hz = 739.5 Hz
Answer - c. 739.5 Hz
The object does not move.
Physics in everyday life
Physics, or the study of matter, energy, and the interactions between them, helps us to understand the laws and rules that govern the physical world. Not every student will grow up and study physics on a deeper level, but everyone uses basic physics concepts to navigate everyday life.
Answer:
a.241.08 m/s b. 196 Hz c. 392 Hz
Explanation:
a. Determine the speed of waves within the wire.
The frequency of oscillation of the wave in the string, f = nv/2L where n = harmonic number, v = speed of wave in string, L = length of string = 1.23 m.
Since f = 588 Hz which is the 6 th harmonic, n = 6. So, making v subject of the formula, we have
v = 2Lf/n
substituting the values of the variables into v. we have
v = 2 × 1.23 m × 588Hz/6
v = 241.08 m/s
b. Determine the frequency at which the wire will vibrate with the first harmonic wave pattern.
The first harmonic is obtained from f when n = 1,
So, f = v/2L = 241.08 m/s ÷ 1.23m = 196 Hz
c. Determine the frequency at which the wire will vibrate with the second harmonic wave pattern.
The second harmonic f' = 2f = 2 × 196 Hz = 392 Hz
Answer:
V = 0.0283 m³ = 28300 cm³
T₂ = 1200 K
Explanation:
The volume of the gas can be determined by using General Gas Equation:
PV = nRT
where,
P = Pressure of Gas = (72 cm of Hg)(1333.2239 Pa/cm of Hg) = 95992.12 Pa
V = Volume of Gas = ?
n = no. of moles = mass/molar mass = (35 g)/(32 g/mol) = 1.09 mol
R = General Gas Constant = 8.314 J/ mol.k
T = Temperature of Gas = 27°C + 273 = 300 k
Therefore,
(95992.12 Pa)(V) = (1.09 mol)(8.314 J/mol.k)(300 k)
V = 2718.678 J/95992.12 Pa
<u>V = 0.0283 m³ = 28300 cm³</u>
<u></u>
The Kinetic Energy of gas molecule is given as:
K.E = (3/2)(KT)
Also,
K.E = (1/2)(mv²)
Comparing both equations, we get:
(3/2)(KT) = (1/2)(mv²)
v² = 3KT/m
v = √(3KT/m)
where,
v = r.m.s velocity
K = Boltzamn Constant
T = Absolute Temperature
m = mass of gas molecule
At T₁ = 300 K, v = v₁
v₁ = √(3K*300/m)
v₁ = √(900 K/m)
Now, for v₂ = 2v₁ (double r.m.s velocity), T₂ = ?
v₂ = 2v₁ = √(3KT₂/m)
using value of v₁:
2√(900 K/m) = √(3KT₂/m)
4(900) = 3 T₂
<u>T₂ = 1200 K</u>