Trying to figure this out
Answer:
A) g = 9.751 m/s², B) h = 2.573 10⁴ m
Explanation:
The angular velocity of a pendulum is
w = √ g / L
Angular velocity and frequency are related.
w = 2π f
f = 1 / 2π √ g / L
A) with the initial data we can look for the pendulum length
L = 1 /4π² g / f²
L = 1 /4π² 9,800 / 0.3204²
L = 2.4181 m
The length of the pendulum does not change, let's look for the value of g for the new location
g = 4π² f² L
g = 4π² 0.3196² 2.4181
g = 9.75096 m / s²
g = 9.751 m/s²
B) The value of the acceleration of gravity can be found with the law of universal gravitation
F = G m M /
²
And Newton's second law
W = m g
W = F
G m M /
² = mg
g = G M /
²
² = G M / g
Let's calculate
² = 6.67 10⁻¹¹ 5.98 10²⁴ /9.75096
R = √ 4.0905 10¹³ = √ 40.9053 10¹²
R = 6.395726 10⁶ m
The height above sea level is
h = R - [tex]R_{e}[/tex
h = (6.395726 -6.37) 10⁶
h = 0.0257256 106
h = 2.573 10⁴ m
Have you ever looked up the density of a substance ? You ought to try it. Go ahead. Pick a substance, then go online or open up an actual book and find its density. You will never see any particular volume mentioned along with the density . . . because it doesn't matter. The whole idea of density is that it describes the substance, no matter how much or how little you have of it. The density of a tiny drop of water under a microscope is the same as the density of a supertanker-ful of water.
U=RI Ohm's law
then R=U/I
=120/0.08
=2250Ω
hope this helps you