Notice this is a geometric progression since each number multiplied by some factor equals the next number in the sequence, in this case,

Then by applying the formula for sum to infinity of a geometric progression,
Answer:
(s-6)/r
option D
Step-by-step explanation:
The slope-intercept form a line is y=mx+b where m is the slope and b is the y-intercept.
Compare y=mx+b and y=cx+6, we see that m=c and c is the slope.
Now we are also given that (r,s) is on our line which means s=c(r)+6.
We need to solve this for c to put c in terms of r and s as desired.
s=cr+6
Subtract 6 on both sides:
s-6=cr
Divide both sides by r:
(s-6)/r=c
The slope in terms of r and s is:
(s-6)/r.
9514 1404 393
Answer:
Step-by-step explanation:
Consecutive interior angles are supplementary.
(x -20)° +(4x +15)° = 180°
5x = 185 . . . . . . . . . . . . . . divide by °, add 5
x = 37 . . . . . . . . . . . . divide by 5
__
74° +(5y -4)° = 180°
5y = 110 . . . . . . . . . . . divide by °, subtract 70
y = 22 . . . . . . . . . . divide by 5