Answer: Formal Charges: Hydrogen = 0 and Oxygen = +1
Unshared Pair of electrons: Hydrogen = 0 and Oxygen = 2
Explanation:
The attachment below shows the Lewis structure and the calculations
Answer:
Cellular respiration.
Explanation:
Through the process of cellular respiration, the energy in food is converted into energy that can be used by the body's cells. During cellular respiration, glucose and oxygen are converted into carbon dioxide and water, and the energy is transferred to ATP.
Given:
Diprotic weak acid H2A:
Ka1 = 3.2 x 10^-6
Ka2 = 6.1 x 10^-9.
Concentration = 0.0650 m
Balanced chemical equation:
H2A ===> 2H+ + A2-
0.0650 0 0
-x 2x x
------------------------------
0.065 - x 2x x
ka1 = 3.2 x 10^-6 = [2x]^2 * [x] / (0.065 - x)
solve for x and determine the concentration at equilibrium.
Answer:
The correct answer is "obligatory water reabsorption in the proximal convoluted tubule".
Explanation:
The mechanism for producing concentrated urine cannot include the obligatory reabsorption of water in the proximal convoluted tubule since this process is part of the nephron, the system that filters the blood. Glucose and amino acids are reabsorbed almost entirely, as are approximately 70% of filtered potassium and 80% of bicarbonate.
Have a nice day!
Answer:
Atoms must have similar electronegativities in order to share electrons in a covalent bond.
Explanation:
Covalent bonding is one of the bondings that occurs between the atoms of elements. It is the bonding in which atoms share their valence electrons with one another. However, the ELECTRONEGATIVITY, which is the ability of an atom to be attracted to electrons play a major role in the formation of covalent bonds.
When atoms of different electronegativities combine, the more electronegative atom pulls more electrons towards itself, hence, an IONIC bond is formed. However, when the electronegativities of the atoms are similar, the sharing of their electrons becomes stronger. Hence, ATOMS MUST HAVE SIMILAR ELECTRONEGATIVITIES in order to share electrons in a covalent bond.