Answer:
200 trucks
Step-by-step explanation:
There's about 15 trucks in the 2nd row from the right. It looks to be about 1/2 the size of the rows to the left of it.
So based on that, I can assume, there are about 30 trucks in each of the 5 long rows, and both of the short rows would make up about another 30 trucks total. There are various trucks parked along the perimeter or between rows, so I estimated there would be about 20 of those based on 3 per row.
30 x 5 = 150 +30 = 180 + 20 = 200
Answer:

Step-by-step explanation:
im pretty sure its this smack me if im wrong
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
<h3>How to determine the maximum height of the ball</h3>
Herein we have a <em>quadratic</em> equation that models the height of a ball in time and the <em>maximum</em> height represents the vertex of the parabola, hence we must use the <em>quadratic</em> formula for the following expression:
- 4.8 · t² + 19.9 · t + (55.3 - h) = 0
The height of the ball is a maximum when the discriminant is equal to zero:
19.9² - 4 · (- 4.8) · (55.3 - h) = 0
396.01 + 19.2 · (55.3 - h) = 0
19.2 · (55.3 - h) = -396.01
55.3 - h = -20.626
h = 55.3 + 20.626
h = 75.926 m
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
To learn more on quadratic equations: brainly.com/question/17177510
#SPJ1
Answer:
Step-by-step explanation:
Answer:
The dimensions of the yard are W=20ft and L=40ft.
Step-by-step explanation:
Let be:
W: width of the yard.
L:length.
Now, we can write the equation of that relates length and width:
(Equation #1)
The area of the yard can be expressed as (using equation #1 into #2):
(Equation #2)
Since the Area of the yard is
, then equation #2 turns into:

Now, we rearrange this equation:

We can divide the equation by 5 :

We need to find the solution for this quadratic. Let's find the factors of 160 that multiplied yields -160 and added yields -12. Let's choose -20 and 8, since
and
. The equation factorised looks like this:

Therefore the possible solutions are W=20 and W=-8. We discard W=-8 since width must be a positive number. To find the length, we substitute the value of W in equation #1:

Therefore, the dimensions of the yard are W=20ft and L=40ft.