The two parabolas intersect for

and so the base of each solid is the set

The side length of each cross section that coincides with B is equal to the vertical distance between the two parabolas,
. But since -2 ≤ x ≤ 2, this reduces to
.
a. Square cross sections will contribute a volume of

where ∆x is the thickness of the section. Then the volume would be

where we take advantage of symmetry in the first line.
b. For a semicircle, the side length we found earlier corresponds to diameter. Each semicircular cross section will contribute a volume of

We end up with the same integral as before except for the leading constant:

Using the result of part (a), the volume is

c. An equilateral triangle with side length s has area √3/4 s², hence the volume of a given section is

and using the result of part (a) again, the volume is

Answer:
yes
Step-by-step explanation:
8² + 15² = 17²
64 + 225 = 289
289 = 289
Answer:
1. yes
2, no
3. yes
4. yes
Step-by-step explanation:
1. yes
If both sets of opposite sides are congruent, the quadrilateral is a parallelogram.
2. no
We know two side lengths. We know nothing about the other 2 sides and also nothing about all 4 angles.
3. yes
The missing angle must be 102°. With both pairs of opposite angles congruent, it must be a parallelogram.
4. yes
With both pairs of opposite angles congruent, it must be a parallelogram.
Answer:
Simplify the radical by breaking the radical up into a product of known factors.
2
√
10
Step-by-step explanation:
Answer:
1. Objective function is a maximum at (16,0), Z = 4x+4y = 4(16) + 4(0) = 64
2. Objective function is at a maximum at (5,3), Z=3x+2y=3(5)+2(3)=21
Step-by-step explanation:
1. Maximize: P = 4x +4y
Subject to: 2x + y ≤ 20
x + 2y ≤ 16
x, y ≥ 0
Plot the constraints and the objective function Z, or P=4x+4y)
Push the objective function to the limit permitted by the feasible region to find the maximum.
Answer: Objective function is a maximum at (16,0),
Z = 4x+4y = 4(16) + 4(0) = 64
2. Maximize P = 3x + 2y
Subject to x + y ≤ 8
2x + y ≤ 13
x ≥ 0, y ≥ 0
Plot the constraints and the objective function Z, or P=3x+2y.
Push the objective function to the limit in the increase + direction permitted by the feasible region to find the maximum intersection.
Answer: Objective function is at a maximum at (5,3),
Z = 3x+2y = 3(5)+2(3) = 21