Answer:
YES! we conclude that f(x) = 1/3x + 5 and g(x) = 3x - 15 are inverse functions.
Step-by-step explanation:
Given
Given that the function f(x) and g(x) are inverse functions.
![f\left(x\right)\:=\:\frac{1}{3}x\:+\:5](https://tex.z-dn.net/?f=f%5Cleft%28x%5Cright%29%5C%3A%3D%5C%3A%5Cfrac%7B1%7D%7B3%7Dx%5C%3A%2B%5C%3A5)
![g(x) = 3x - 15](https://tex.z-dn.net/?f=g%28x%29%20%3D%203x%20-%2015)
To determine
Let us determine whether f(x) = 1/3x + 5 and g(x) = 3x - 15 are inverse functions.
<u>Determining the inverse function of f(x) </u>
A function g is the inverse function of f if for y = f(x), x = g(y)
![y=\frac{1}{3}x+5](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B1%7D%7B3%7Dx%2B5)
Replace x with y
![x=\frac{1}{3}y+5](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B1%7D%7B3%7Dy%2B5)
Solve for y
![y=3x-15](https://tex.z-dn.net/?f=y%3D3x-15)
Therefore,
YES! we conclude that f(x) = 1/3x + 5 and g(x) = 3x - 15 are inverse functions.
<span>area is side by side.
so do 6.25*6.25 and that equals 39.0625
</span>
Answer:
35
Step-by-step explanation:
![\frac{1}{14} +\frac{1}{t} =\frac{1}{10}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B14%7D%20%2B%5Cfrac%7B1%7D%7Bt%7D%20%3D%5Cfrac%7B1%7D%7B10%7D)
Solving this ^^ would equal t=35.
To find the y-intercept: replace x with 0
to find the x-intercept: replace y with 0
x-int:
0 = 10x - 32
32 = 10x
x = 3.2
(3.2, 0)
y-int:
y = 10(0) - 32
y = -32
(0, -32)