Answer:
f(x) = 4.35 +3.95·sin(πx/12)
Step-by-step explanation:
For problems of this sort, a sine function is used that is of the form ...
f(x) = A + Bsin(2πx/P)
where A is the average or middle value of the oscillation, B is the one-sided amplitude, P is the period in the same units as x.
It is rare that a tide function has a period (P) of 24 hours, but we'll use that value since the problem statement requires it. The value of A is the middle value of the oscillation, 4.35 ft in this problem. The value of B is the amplitude, given as 8.3 ft -4.35 ft = 3.95 ft. Putting these values into the form gives ...
f(x) = 4.35 + 3.95·sin(2πx/24)
The argument of the sine function can be simplified to πx/12, as in the Answer, above.
You can take the log of the left and right hand side, and then apply the <span>logarithm rules:
log(a</span>ˣ) = x·log(a)
log(ab) = log(a) + log(b)
log(9^(x-1) * 2^(2x+2)) = log(6^(3x))
log(9^(x-1)) + log(2^(2x+2)) = 3x log(6)
(x-1) log(9) + (2x+2) log(2) - 3x log(6) = 0
x(log9 + 2log2 - 3log6) = log9 - 2log2
x = (log9 - 2log2) / (log9 + 2log2 - 3log6)
simplifying by writing log9 = 2log3 and log6 = log2+log3
x= 2(log3 - log2) / (2log3 + 2log2 - 3log2 - 3log3) =
x= -2(log3 - log2) / (log3 + log2) = -2 log(3/2) / log(6)
So 6^x = 4/9
One half is equal to 3/6.
One third is equal to 2/6.
After removing 600 litres from the tank, there is a decrease from 3/6 to 2/6
3/6-2/6=1/6
600 litres is 1/6 of the tank. Multiply by 6 to get the capacity of a full tank.
600*6=3600
The tank can hold 3600 litres.
Answer:
26
Step-by-step explanation:
the answer is 26
Answer:
25cm
Step-by-step explanation:
one the possibility 36 - 11 =25 the answer is 25