If the question is to find the slope-intercept form of both lines, here's the answer:
Both lines pass through the point (-3,-4), so we can use these coordinates in both equations. The slope-intercept form is represented by y=mx+b, with m the slope, b the intersection of the line with Y'Y for x=0, y and x the coordinates of a point.
Let's first apply all these for the first line, with a slope of 4.
y = mx + b
y=-3; x=-4; m=4. All we need to do is find b.
-3 = 4(-4) + b
-3 = -16 + b
b=13
So the equation of the first line is y= 4x + 13.
Now, we'll do the same thing but for the second line:
y=-3; x=-4; m=-1/4, and we need to find b.
-3 = (-1/4)(-4) + b
-3 = 1 + b
b= -4
So the equation of the second line is y=(-1/4)x - 4
Hope this Helps! :)
In analytic geometry, using the common convention that the horizontal axis represents a variable x and the vertical axis represents a variable y, a y-intercept or vertical intercept is a point where the graph of a function or relation intersects the y-axis of the coordinate system. As such, these points satisfy x = 0.
Is there more context to the question?
Complete the math in the brackets (4a + 1)
Multiple each term in the brackets by 4a
4a (8a - 4a + 1)
4a (4a + 1)
16a^2 + 4a
Let S = Sum after 13 years
So = amount invested
t = time in years
i = annual interest rate = .0325
The S = So(1+i)t = $2,200(1.0325)13 = $3,334.21