Answer:
Option (1).
Step-by-step explanation:
Statement given states that "A canary's beak is, at most 20 mm long."
Word "at most" means "the maximum".
So at most length of the beak means "length of the beak is less than equal to 20 mm".
And the expression representing this statement algebraically will be,
x ≤ 20
Therefore, option (1) will be the correct option.
Answer:
For purple;
P(p) = 337/848 = 0.40
For white;
P(w) = 511/848 = 0.60
Step-by-step explanation:
Given;
Number of plants with purple flowers P = 337
Number of plants with white flowers W = 511
Total T = 337 + 511 = 848
For purple;
the empirical Probability that a plant had purple flowers P(p) is
P(p) = Number of plants with purple flowers/total number of plants
P(p) = P/T
Substituting the values, we have;
P(p) = 337/848 = 0.40
For white;
the empirical Probability that a plant had white flowers P(w) is
P(w) = Number of plants with white flowers/total number of plants
P(w) = W/T
Substituting the values, we have;
P(w) = 511/848 = 0.60
Answer:
C. True; by the Invertible Matrix Theorem if the equation Ax=0 has only the trivial solution, then the matrix is invertible. Thus, A must also be row equivalent to the n x n identity matrix.
Step-by-step explanation:
The Invertible matrix Theorem is a Theorem which gives a list of equivalent conditions for an n X n matrix to have an inverse. For the sake of this question, we would look at only the conditions needed to answer the question.
- There is an n×n matrix C such that CA=
. - There is an n×n matrix D such that AD=
. - The equation Ax=0 has only the trivial solution x=0.
- A is row-equivalent to the n×n identity matrix
. - For each column vector b in
, the equation Ax=b has a unique solution. - The columns of A span
.
Therefore the statement:
If there is an n X n matrix D such that AD=I, then there is also an n X n matrix C such that CA = I is true by the conditions for invertibility of matrix:
- The equation Ax=0 has only the trivial solution x=0.
- A is row-equivalent to the n×n identity matrix
.
The correct option is C.