Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
This had to do with gain power and trade inequality business
Answer:
velocity changes over time.
Explanation:
Given that,
Initial speed of the car, u = 88 km/h = 24.44 m/s
Reaction time, t = 2 s
Distance covered during this time, 
(a) Acceleration, 
We need to find the stopping distance, v = 0. It can be calculated using the third equation of motion as :


s = 74.66 meters
s = 74.66 + 48.88 = 123.54 meters
(b) Acceleration, 


s = 37.33 meters
s = 37.33 + 48.88 = 86.21 meters
Hence, this is the required solution.