Maria needs to save $187.50 per month in order to attend college.
First, subtract the $1,100 scholarship from the cost of college, or $10,100, to get $9,000. This is the amount that she needs to save after 4 years. Next, since she is saving monthly, we need to know how many monthly periods are in 4 years, so multiply 12 months/year by 4 years to get 48 monthly periods. Finally, divide the total amount needed ($9,000) by the monthly periods (48) to get $187.50. This answer would change if she earned any interest on her savings, and depending on the compounding period, if any, for such interest.
3272.727272 is the answer for 36000 divided by 11. The part of 72727272 never ends. Lol! You're Welcome for answering your question.
Answer:
common ratio: 1.155
rate of growth: 15.5 %
Step-by-step explanation:
The model for exponential growth of population P looks like: 
where
is the population at time "t",
is the initial (starting) population
is the common ratio,
and
is the rate of growth
Therefore, in our case we can replace specific values in this expression (including population after 12 years, and initial population), and solve for the unknown common ratio and its related rate of growth:
![P(t)=P_i(1+r)^t\\13000=2300*(1+r)^{12}\\\frac{13000}{2300} = (1+r)^12\\\frac{130}{23} = (1+r)^{12}\\1+r=\sqrt[12]{\frac{130}{23} } =1.155273\\](https://tex.z-dn.net/?f=P%28t%29%3DP_i%281%2Br%29%5Et%5C%5C13000%3D2300%2A%281%2Br%29%5E%7B12%7D%5C%5C%5Cfrac%7B13000%7D%7B2300%7D%20%3D%20%281%2Br%29%5E12%5C%5C%5Cfrac%7B130%7D%7B23%7D%20%3D%20%281%2Br%29%5E%7B12%7D%5C%5C1%2Br%3D%5Csqrt%5B12%5D%7B%5Cfrac%7B130%7D%7B23%7D%20%7D%20%3D1.155273%5C%5C)
This (1+r) is the common ratio, that we are asked to round to the nearest thousandth, so we use: 1.155
We are also asked to find the rate of increase (r), and to express it in percent form. Therefore we use the last equation shown above to solve for "r" and express tin percent form:

So, this number in percent form (and rounded to the nearest tenth as requested) is: 15.5 %
Answer:
y= -1
Explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.