To solve this problem, we use Beer's Law: A= ε.l.c
A is the absorbance- 0,558
<span>ε is</span> the molar absorptivity- is <span>15000 </span><span><span>L⋅mol-1</span><span>cm-1</span></span>
<span>l is </span>the length of the cuvette- 1 cm
<span>c is</span> the molar concentration
Applying the formula,
0,558= 15000 x 1 x c
0,558/15000= c
c= <span>3.72×<span>10⁻⁵ </span> <span>mol⋅L<span>⁻¹</span></span></span>
<span />
Answer:
0.158 moles
Explanation:
We are given;
9.50 x 10^22 molecules of CO
We are required to determine the number of moles;
We need to know;
1 mole of a compound = 6.022 × 10^23 molecules
Therefore;
9.50 x 10^22 molecules of CO will be equivalent to;
= 9.50 x 10^22 molecules ÷ 6.022 × 10^23 molecules/mole
= 0.158 moles
Therefore, the number of moles are 0.158 moles
Crush the limestone... it would give more area for the acid to react
C. till .....................................................................
Answer:
The reaction when the Borane (BH3) is add to an alkene and form an alkylborane is shown below.
Explanation:
The boron of the borane does not have extra electron pairs, in this way the double bond of the alkene attacks the boron and the hydrogen belonging to the borane adheres to the carbon that is more substituted, thus forming an alkyl borane.