Answer:

Explanation:
Hello there!
In this case, according to the given information and chemical equation, it turns out possible for us to calculate the moles of C2O4^2- by firstly setting up the equilibrium expression:
![Kc=\frac{[[Fe(C_2O_4)_3]^{3-}]}{[Fe^{3+}][C_2O_4^{2-}]^3}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5B%5BFe%28C_2O_4%29_3%5D%5E%7B3-%7D%5D%7D%7B%5BFe%5E%7B3%2B%7D%5D%5BC_2O_4%5E%7B2-%7D%5D%5E3%7D)
However, according to the question, we just need to apply the given 1:3 mole ratio in the chemical reaction, of iron (III) ions to oxalate ions to obtain:

Regards!
Answer:
The rate is a mathematical relationship obtained by comparing reaction rate with reactant concentrations.
Answer:
0.51M
Explanation:
Given parameters:
Initial volume of NaBr = 340mL
Initial molarity = 1.5M
Final volume = 1000mL
Unknown:
Final molarity = ?
Solution;
This is a dilution problem whereas the concentration of a compound changes from one to another.
In this kind of problem, we must establish that the number of moles still remains the same.
number of moles initially before diluting = number of moles after dilution
Number of moles = Molarity x volume
Let us find the number of moles;
Number of moles = initial volume x initial molarity
Convert mL to dm³;
1000mL = 1dm³
340mL gives
= 0.34dm³
Number of moles = initial volume x initial molarity = 0.34 x 1.5 = 0.51moles
Now to find the new molarity/concentration;
Final molarity =
=
= 0.51M
We can see a massive drop in molarity this is due to dilution of the initial concentration.
The metric unit for mass is B. Kilograms