Answer:
the highest is "A" and the lower is "C"
Use ideal gas law PV=nRT
at STP, pressure is 1atm and temperature is 273K (0 Celsius)
1×1.5L=n × 0.0821 × 273
n is moles and R is ideal gas law constant, always 0.0821
moles= 14.9422(6.02×10^23 molecules)=9.0×10^24 molecules
Lithium has charge of +1 and bromide has charge of - 1. So they combine to form the compound lithium bromide which is expressed as LiBr.
<h3><u>Explanation:</u></h3>
Lithium is an alkali metal placed in group 1 or periodic table. It has a valency of 1 which is achieved as lithium loses an electron to achieve a charge of +1.
Bromine is a halogen which is placed in group 17 of periodic table. It has a valency of 1 which is achieved as bromine looses an election to achieve a charge of - 1.
Lithium is the cation and bromide is the anion. So lithium is written in front and bromine following the cation. And as both of their valencies are 1, so they form the compound LiBr.
Answer:
D. 12
Explanation:
The pH is a measure of the acidity of a solution. The pH indicates the concentration of hydronium ions [H3O +] present in a solution;
pH = - log [H3O+]
So
pH= - log [7.8 × 10−13 M]
finally
pH= 12
pH=2.7
<h3>Further explanation</h3>
Acetic acid = weak acid
![\tt [H^+]=\sqrt{Ka.M}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D)
Ka = acid ionization constant
M = molarity
Ka for Acetic acid(CH₃COOH) : 1.8 x 10⁻⁵
![\tt [H^+]=\sqrt{1.8\times 10^{-5}\times 0.222}\\\\=0.001998=1.998\times 10^{-3}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-5%7D%5Ctimes%200.222%7D%5C%5C%5C%5C%3D0.001998%3D1.998%5Ctimes%2010%5E%7B-3%7D)
