<span>Answer: option (4) the same magnitude and the opposite sign.
</span>
Justification:
<span /><span /><span>
</span><span>1) Electrons are negative particles thar are around the nucleus of the atom (in regions called orbitals).
</span>
<span /><span /><span>
2) Protons are positive particles that are inside the nuclus of the atom.
</span><span />
<span>3) The nucleus of the atom has the same number of protons as electrons are in the orbitals of the atom.
</span>
<span /><span /><span>
4) The atoms are neutral (neither positive nor negative) because there are the same number of electrons and protons and their charge are of the same magnitude but different sign: (+) + (-) = 0: positive + negative = neutral.</span>
S + O2 → SO2
<span>z / (32.0655 g S/mol) x (1 mol SO2 / 1 mol S) x (64.0638 g SO2/mol) = (1.9979 z) g SO2 </span>
<span>C + O2 → CO2 </span>
<span>(9.0-z) / (12.01078 g C/mol) x (1 mol CO2 / 1 mol C) x (44.00964 g CO2/mol) = (32.9776 - 3.66418 z) g CO2 </span>
<span>Add the two masses of SO2 and CO2 and set them equal to the amount given in the problem: </span>
<span>(1.9979 z) + (32.9776 - 3.66418 z) = 27.9 </span>
<span>Solve for z algebraically: </span>
<span>z = 3.0 g S</span>
https://www.britannica.com/science/soap/Raw-materials
Answer:
sulfur
Explanation:
sulfur has 4p electrons.
phosphorus has 3p electrons.
The question is asking which one has 4
Answer:
a. Gly-Lys + Leu-Ala-Cys-Arg + Ala-Phe
b. Glu-Ala-Phe + Gly-Ala-Tyr
Explanation:
In this case, we have to remember which peptidic bonds can break each protease:
-) <u>Trypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of lysine or arginine.
-) <u>Chymotrypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of phenylalanine, tryptophan, or tyrosine.
With this in mind in "peptide a", the peptidic bonds that would be broken are the ones in the <u>"Lis"</u> and <u>"Arg"</u> (See figure 1).
In "peptide b", the peptidic bond that would be broken is the one in the <u>"Phe"</u> (See figure 2). The second amino acid that can be broken is <u>tyrosine</u>, but this amino acid is placed in the <u>C terminal spot</u>, therefore will not be involved in the <u>hydrolysis</u>.