There was 3000 general admission tickets sold and 500 kid ticket sold.
How did I get this?
First, we need to see what information we have.
$2.50 = General admission tickets = (G)
$0.50 = kids tickets = (K)
There were 6x as many general admission tickets sold as kids. G = 6K
We need two equations:
G = 6K
$2.50G + $.50K = $7750
Since, G = 6K we can substitute that into the 2nd equation.
2.50(6K) + .50K = 7750
Distribute 2.50 into the parenthesis
15K + .50K = 7750
combine like terms
15.50K = 7750
Divide both sides by 15.50, the left side will cancel out.
K = 7750/15.50
K = 500 tickets
So, 500 kid tickets were sold.
Plug K into our first equation (G = 6k)
G = 6*500
G = 3000 tickets
So, 3000 general admission tickets were sold,
Let's check this:
$2.50(3000 tickets) = $7500 (cost of general admission tickets)
$.50(500 tickets) = $250 (cost of general admission tickets)
$7500 + $250 = $7750 (total cost of tickets)
Answer: 92/3 OR 30 2/3 ??
Step-by-step explanation:
Answer: Option B
B. 
Step-by-step explanation:
We have the following equations:
(1)
(2)
Let us call "a" the coefficient of the variable x in the first equation and call "b" the coefficient of the variable x in the second equation.
Then we must multiply the number "a" by a value z such that when adding
the result is zero.

So

We solve the equation for z


The first equation must be multiplied by a value of 
(3r^-2s^3t^0)^-3
~~~~~~~~~~~~~~ r (s)
3
=1/3 r^7 s
~~~~~~~~~
27s^9
= r^7
~~~~~~~
81s^8
Answer is =r^7/ 81s^8