Answer:Amplitude:the maximum displacement or distance moved by a point on a vibrating body or wave measured from its equilibrium position. It is equal to one-half the length of the vibration path.Wave speed:Wave speed is the distance a wave travels in a given amount of time, such as the number of meters it travels per second. Wave speed is related to wavelength and wave frequency by the equation: Speed = Wavelength x Frequency. This equation can be used to calculate wave speed when wavelength and frequency are known.Wavelength:Wavelength is the distance between identical points (adjacent crests) in the adjacent cycles of a waveform signal propagated in space or along a wire. In wireless systems, this length is usually specified in meters (m), centimeters (cm) or millimeters (mm).Frequency:frequency, in physics, the number of waves that pass a fixed point in unit time; also, the number of cycles or vibrations undergone during one unit of time by a body in periodic motion.
Explanation:
Resources found in lithosphere: gold and iron etc
Resources found in atmosphere: Water vapor, gases etc.
The reactivity of metals increases as you move left in a period and as you move down in a group, so Marie needs to know the period and group of the element inside each box. Boxes that show locations in groups 1 or 2 or in period 8 contain the most reactive elements.
Answer:
34.9 g of Zn(OH)₂ is the maximum mass that can be formed
Explanation:
Let's state the reaction:
ZnO(s) + H₂O(l) → Zn(OH)₂ (aq)
First of all, we need to determine the moles of each reactant and state the limiting:
28.6 g . 1mol /81.38 g = 0.351 moles of ZnO
9.54 g . 1mol /18 g = 0.53 moles of water
As ratio is 1:1, for 0.53 moles of water, we need 0.53 moles of ZnO, but we only have 0.351, so the limiting reactant is the ZnO.
Ratio with the product is also 1:1. From 0.351 moles of oxide we can produce 0.351 moles of hydroxide. Let's calculate the mass:
0.351 mol . 99.4 g /1mol = 34.9 g