Answer:
b)15.0°C
Explanation:
Specific Heat of Water=4.2 J/g°C
This means, that 1 g of Water will take 4.2 J of energy to increase its temperature by 1°C.
∴80 g Water will take 80×4.2 J of energy to increase its temperature by 1°C.
80×4.2 J=336 J
Total Energy Provided=1680 J
The temperature increase=\frac{\textrm{Total energy required}}{\textrm{energy required to increase temperature by one degree}}
Temperature increase=
=5°C
Initial Temperature =10°C
Final Temperature=Initial + Increase in Temperature
=10+5=15°C
Answer:
CCl4- tetrahedral bond angle 109°
PF3 - trigonal pyramidal bond angles less than 109°
OF2- Bent with bond angle much less than 109°
I3 - linear with bond angles = 180°
A molecule with two double bonds and no lone pairs - linear molecule with bond angle =180°
Explanation:
Valence shell electron-pair repulsion theory (VSEPR theory) helps us to predict the molecular shape, including bond angles around a central atom, of a molecule by examination of the number of bonds and lone electron pairs in its Lewis structure. The VSEPR model assumes that electron pairs in the valence shell of a central atom will adopt an arrangement which tends to minimize repulsions between these electron pairs by maximizing the distance between them. The electrons in the valence shell of a central atom are either bonding pairs of electrons, located primarily between bonded atoms, or lone pairs. The electrostatic repulsion of these electrons is reduced when the various regions of high electron density assume positions as far apart from each other as possible.
Lone pairs and multiple bonds are known to cause more repulsion than single bonds and bond pairs. Hence the presence of lone pairs or multiple bonds tend to distort the molecular geometry geometry away from that predicted on the basis of VSEPR theory. For instance CCl4 is tetrahedral with no lone pair and four regions of electron density around the central atom. This is the expected geometry. However OF2 also has four regions of electron density but has a bent structure. The molecule has four regions of electron density but two of them are lone pairs causing more repulsion. Hence the observed bond angle is less than 109°.
Taking into account the reaction stoichiometry, 340.0 moles of methane are produced when 85.1 moles of carbon dioxide gas react with excess hydrogen gas
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
CO₂ + 4 H₄ → CH₄ + 2 H₂O
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- CO₂: 1 mole
- H₄: 4 moles
- CH₄: 1 mole
- H₂O: 2 moles
<h3>Moles of CH₄ formed</h3>
The following rule of three can be applied: if by reaction stoichiometry 1 mole of CO₂ form 4 moles of CH₄, 85.1 moles of CO₂ form how many moles of CH₄?

<u><em>moles of CH₄= 340.4 moles</em></u>
Then, 340.0 moles of methane are produced when 85.1 moles of carbon dioxide gas react with excess hydrogen gas
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1