1 mole =6.0 * 10^23 atoms
3.0*10^23 atoms = 0.5 moles
the molar mass of neon is 20.18g/mole
0.5 moles = 10.09 grams
The enthalpy change of the reaction below (ΔHr×n , in kJ) using the bond energies provided. CO(g) + Cl₂(g) → Cl₂CO(g). is - 108kJ.
The bond energies data is given as follows:
BE for C≡O = 1072 kJ/mol
BE for Cl-Cl = 242 kJ/mol
BE for C-Cl = 328 kJ/mol
BE for C=O = 766 kJ/mol
The enthalpy change for the reaction is given as :
ΔHr×n = ∑H reactant bond - ∑H product bond
ΔHr×n = ( BE C≡O + BE Cl-Cl) - ( BE C=O + BE 2 × Cl-Cl )
ΔHr×n = ( 1072 + 242 ) - ( 766 + 656 )
ΔHr×n = 1314 - 1422
ΔHr×n = - 108 kJ
Thus, The enthalpy change of the reaction below ( ΔHr×n , in kJ) using the bond energies provided. CO(g) + Cl₂(g) → Cl₂CO(g). is - 108kJ.
To learn more about enthalpy here
brainly.com/question/13981382
#SPJ1
Answer
2.1 x 10 ^23
fdxkjns9fhnuvypdsssssssssz89999qewv
Which could be soluble in soap?
Answer: Out of all the options presented above the one that represents which substance is soluble in soap is answer choice C) both because soap is part polar and part nonpolar.
I hope it helps, Regards.
Answer:
11.9 is the pOH of a 0.150 M solution of potassium nitrite.
Explanation:
Solution : Given,
Concentration (c) = 0.150 M
Acid dissociation constant = 
The equilibrium reaction for dissociation of
(weak acid) is,

initially conc. c 0 0
At eqm.

First we have to calculate the concentration of value of dissociation constant
.
Formula used :

Now put all the given values in this formula ,we get the value of dissociation constant
.



By solving the terms, we get

No we have to calculate the concentration of hydronium ion or hydrogen ion.
![[H^+]=c\alpha=0.150\times 0.0533=0.007995 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%3D0.150%5Ctimes%200.0533%3D0.007995%20M)
Now we have to calculate the pH.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


pH + pOH = 14
pOH =14 -2.1 = 11.9
Therefore, the pOH of the solution is 11.9