1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zanzabum
3 years ago
14

What is the Slope of a line that contains (-11,5) and (-6,1)

Mathematics
1 answer:
Anna007 [38]3 years ago
5 0

Answer:

-5/4

Step-by-step explanation:

Im pretty sure its -5/4

Sorry if im wrong, hope this helps!!

You might be interested in
If the probability of drawing an ace from a deck of cards is 0.077 and the probability of rolling a "2" using a fair die is 0.16
Vlad1618 [11]
The probability of drawing an ace and rolling a "2" is = 0.077 × 0.167

you just multiply and get the answer.
3 0
3 years ago
Question 3 of 10
mestny [16]

Answer:

㋡

Check Answer

♣ Qᴜᴇꜱᴛɪᴏɴ :

If tan θ = \sf{\dfrac{1}{\sqrt{7}}}

7

1

, Show that \sf{\dfrac{cosec ^2 \theta - sec ^2\theta}{cosec^2\theta + sec^2\theta }=\dfrac{3}{4}}

cosec

2

θ+sec

2

θ

cosec

2

θ−sec

2

θ

=

4

3

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

We know :

\large\boxed{\sf{tan\theta=\dfrac{Height}{Base}}}

tanθ=

Base

Height

So comparing this formula and value of tan θ from question, we get :

Height = 1

Base = √7

Now we need to Prove the value of : \sf{\dfrac{cosec ^2 \theta - sec ^2\theta}{cosec^2\theta + sec^2\theta }=\dfrac{3}{4}}

cosec

2

θ+sec

2

θ

cosec

2

θ−sec

2

θ

=

4

3

Also :

\large\boxed{\sf{cosec\theta=\dfrac{Hypotenuse}{Height}}}

cosecθ=

Height

Hypotenuse

\large\boxed{\sf{sec\theta=\dfrac{Hypotenuse}{Base}}}

secθ=

Base

Hypotenuse

From this we get :

\large\boxed{\sf{cosec^2\theta=\left(\dfrac{Hypotenuse}{Height}\right)^2}}

cosec

2

θ=(

Height

Hypotenuse

)

2

\large\boxed{\sf{sec^2\theta=\left(\dfrac{Hypotenuse}{Base}\right)^2}}

sec

2

θ=(

Base

Hypotenuse

)

2

But we have Height and Base, we dont have Hypotenuse.

Hypotenuse can be found by using Pythagoras Theorem

Pythagoras Theorem states that :

Hypotenuse² = Side² + Side²

For our question :

Hypotenuse² = Height² + Base²

Hypotenuse² = 1² + √7²

Hypotenuse² = 1 + 7

Hypotenuse² = 8

√Hypotenuse² = √8

Hypotenuse = √8

➢ Let's find value's of cosec²θ and sec²θ

________________________________________

First cosec²θ :

\large\boxed{\sf{cosec^2\theta=\left(\dfrac{Hypotenuse}{Height}\right)^2}}

cosec

2

θ=(

Height

Hypotenuse

)

2

\sf{cosec^2\theta=\left(\dfrac{\sqrt{8}}{1}\right)^2}cosec

2

θ=(

1

8

)

2

\sf{cosec^2\theta=\dfrac{8}{1}}cosec

2

θ=

1

8

cosec²θ = 8

________________________________________

Now sec²θ :

\large\boxed{\sf{sec^2\theta=\left(\dfrac{Hypotenuse}{Base}\right)^2}}

sec

2

θ=(

Base

Hypotenuse

)

2

\sf{sec^2\theta=\left(\dfrac{\sqrt{8}}{\sqrt{7}}\right)^2}sec

2

θ=(

7

8

)

2

\sf{sec^2\theta=\dfrac{8}{7}}sec

2

θ=

7

8

sec²θ = 8/7

________________________________________

Now Proving :

\sf{\dfrac{cosec ^2 \theta - sec ^2\theta}{cosec^2\theta + sec^2\theta }=\dfrac{3}{4}}

cosec

2

θ+sec

2

θ

cosec

2

θ−sec

2

θ

=

4

3

Taking L.H.S :

\sf{\dfrac{cosec ^2 \theta - sec ^2\theta}{cosec^2\theta + sec^2\theta }}

cosec

2

θ+sec

2

θ

cosec

2

θ−sec

2

θ

=\sf{\dfrac{8 - sec ^2\theta}{8 + sec^2\theta }}=

8+sec

2

θ

8−sec

2

θ

=\sf{\dfrac{8 - \dfrac{8}{7}}{8 + \dfrac{8}{7} }}=

8+

7

8

8−

7

8

=\sf{\dfrac{\dfrac{48}{7}}{\dfrac{64}{7} }}=

7

64

7

48

\sf{=\dfrac{48\times \:7}{7\times \:64}}=

7×64

48×7

\sf{=\dfrac{48}{64}}=

64

48

\bf{=\dfrac{3}{4}}=

4

3

= R.H.S

Hence Proved !!!

7 0
2 years ago
Necesito un problema para esta ecuación <br><br> (m) (m-2) =48
madreJ [45]

Answer:

m = 8

Step-by-step explanation:

5 0
2 years ago
Explain how the model represents 5/ 1third
Ilia_Sergeevich [38]

Here is ur perfect answer

3 0
2 years ago
4. Find the value of each variable. (x and y) *<br> 45°
elena-14-01-66 [18.8K]

Answer:

x=13 y=18

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • Armando read 20 pages of his 200-page book in 4 hours. At this rate, how long will it take him to read the entire book?
    5·2 answers
  • ABC is a right triangle with right angle at ∠B.
    9·1 answer
  • P1. (3+7 points) What is the smallest positive integer with precisely 5 positive divisors? What is the smallest positive integer
    14·1 answer
  • It’s about right triangles but it’s confusing
    14·2 answers
  • Number 5 i don’t know what to plug in for the original height
    12·1 answer
  • 20 x 10 3 but the 3 is small please i need this ...
    8·2 answers
  • Solve. 90x = 27. Explain every step. Full credit will not be earned unless each step is explained.
    9·2 answers
  • Help please? I don’t get math at all
    7·1 answer
  • In Birthday Gifts, Brier and Rogers found that 71% of married men will get flowers or buy jewelry for their wives on their birth
    13·1 answer
  • Help please thank you
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!