X^-n duals: 1/x^n. You cannot have negative exponents so do its inverse to get rid of the negative exponent
Answer:
g^5h^2
Step-by-step explanation:
12g^5h^4, g^5h^2
This is one way of doing it. Break down every number and every variable into a product of the simplest factors. Then see how many of each factor appear in both monomials.
12g^5h^4 = 2 * 2 * 3 * g * g * g * g * g * h * h * h * h
g^5h^2 = g * g * g * g * g * h * h
So far you see every single prime factor of each monomial.
Now I will mark the ones that are present in both. Those are the common factors.
12g^5h^4 = 2 * 2 * 3 * g * g * g * g * g * h * h * h * h
g^5h^2 = g * g * g * g * g * h * h
The greatest common factor is the product of all the factors that appear in both monomials.
GCF = g * g * g * g * g * h * h = g^5h^2
Answer:
C) 14
Step-by-step explanation:
Isolate the variable, x. Note the equal sign, what you do to one side, you do to the other. Do the opposite of PEMDAS.
First, add 6 to both sides:
3x - 6 (+6) = 36 (+6)
3x = 36 + 6
3x = 42
Next, divide 3 from both sides:
(3x)/3 = (42)/3
x = 42/3
x = 14
c) 14 is your answer.
~
Answer: 8.94
Step-by-step explanation:
<h3>
Answer: 133</h3>
=============================================================
Explanation:
The quickest way to get this answer is to add the angles given to get 87+46 = 133
This is through the use of the remote interior angle theorem.
Note how the angles 87 and 46 are interior, or inside the triangle. And also, they are not adjacent to the exterior angle we want to find. So that's where the "remote" portion comes in.
----------------
The slightly longer method involves letting x be the measure of the missing interior angle of the triangle.
The three interior angles add to 180
87+46+x = 180
133+x = 180
x = 180 - 133
x = 47
The missing interior angle of the triangle is 47 degrees.
Angle 1 is adjacent and supplementary to this 47 degree angle, so,
(angle1)+(47) = 180
angle1 = 180-47
angle1 = 133 degrees
This example helps confirm that the remote interior angle theorem is correct.