Answer: The empirical formula for C6H12O6 is CH2O. Every carbohydrate, be it simple or complex, has an empirical formula CH2O
Explanation:
Answer:
B. Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2
Explanation:
Hello,
In this case, we should understand oxidizing agents as those substances able to increase the oxidation state of another substance, therefore, in B. reaction we notice that copper oxidation state at the beginning is zero (no bonds are formed) and once it reacts with nitric acid, its oxidation states raises to +2 in copper (II) nitrate, thus, in B. Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2 nitritc acid is acting as the oxidizing agent.
Moreover, in the other reactions, copper (A.), sodium (C. and D.) remain with the same initial oxidation state, +2 and +1 respectively.
Regards.
Answer:
Carboxylic acids produce hydrogen bonds amongst themselves and possess lower vapor pressure. They generally possess a sour odor. When an acid and a base react with each other to produce salt and water and comprises the combination of hydrogen and hydroxide ions, the reaction is termed the neutralization reaction. Thus, when carboxylic acid reacts with base the reaction is termed neutralization.
On the other hand, esters are known for their pleasant fragrances. They do not produce hydrogen bonds amongst themselves and possess higher vapor pressure. A hydration reaction in which free hydroxide dissociates the ester bonds between the glycerol and fatty acids of a triglyceride, leading to the formation of free fatty acids and glycerol is termed saponification.
Thus, the given blanks can be filled with carboxylic acid, carboxylic acid, esters, esters, esters, and carboxylic acid.
Answer:
0.99 kg O₂
1.9 kg SO₂
Explanation:
Let's consider the reaction between sulfur and oxygen to form sulfur dioxide.
S + O₂ → SO₂
The mass ratio of S to O₂ is 32.07:32.00. The mass of oxygen required to react with 1 kg of sulfur is:
1 kg S × (32.00 kg O₂/32.07 kg S) = 0.998 kg O₂
The mass ratio of S to SO₂ is 32.07:64.07. The mass of sulfur dioxide formed when 1 kg of sulfur is burned is:
1 kg S × (64.07 kg SO₂/32.07 kg S) = 1.99 kg SO₂