Answer:
0.6743 M
Explanation:
HC₂H₃O₂ + NaOH → NaC₂H₃O₂ + H₂O
First we <u>calculate how many NaOH moles reacted</u>, using the <em>definition of molarity</em>:
- Molarity = moles / volume
- moles = Molarity * volume
- 0.4293 M * 39.27 mL = 16.86 mmol NaOH
<em>One NaOH moles reacts with one acetic acid mole</em>, so <u>the vinegar sample contains 16.86 mmoles of acetic acid as well</u>.
Finally we <u>calculate the concentration (molarity) of acetic acid</u>:
- 16.86 mmol HC₂H₃O₂ / 25.00 mL = 0.6743 M
Answer:
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
Explanation:
Ionic compounds are compound formed from the transfer of electron(s). One atom of the element loses electron(s) while the other atom gains electron(s).
The compound Magnesium chloride is an ionic compound . The bond between an atom of magnesium and 2 atoms of chlorine is an ionic bonding.
The valency electron of magnesium is 2 electron , for the atom of magnesium to attain octet rule, it will easily lose it 2 electrons to the chlorine atoms.
The chlorine atom on the other hand has 7 valency electrons, to attain octet configuration it will most likely gain 1 electron to become stable.
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
<span>Balancing is making sure there are the same number of atoms on either side of the reaction.
Pb(NO3)2 + Li2SO4--> PbSO4 + LiNO3
There are 2 NO3 groups and 2 Li on the right side, need 2 on the left side.
Need a coefficient of 2 for LiNO3
</span>