Answer:
the active region is bound by cutoff region and saturation or power dissipation region.
Explanation:
Answer:
2.464 cm above the water surface
Explanation:
Recall that for the cube to float, means that the volume of water displaced weights the same as the weight of the block.
We calculate the weight of the block multiplying its density (0.78 gr/cm^3) times its volume (11.2^3 cm^3):
weight of the block = 0.78 * 11.2^3 gr
Now the displaced water will have a volume equal to the base of the cube (11.2 cm^2) times the part of the cube (x) that is under water. Recall as well that the density of water is 1 gr/cm^3.
So the weight of the volume of water displaced is:
weight of water = 1 * 11.2^2 * x
we make both weight expressions equal each other for the floating requirement:
0.78 * 11.2^3 = 11.2^2 * x
then x = 0.78 * 11.2 cm = 8.736 cm
This "x" is the portion of the cube under water. Then to estimate what is left of the cube above water, we subtract it from the cube's height (11.2 cm) as follows:
11.2 cm - 8.736 cm = 2.464 cm
Answer:
R= 602 .11 N
Explanation:
The horizontal component of tension T will give reaction of the wall and the vertical component of T will balance the weight of of the climber .
T cos32 = R
710 x .848 = R
R= 602 .11 N .
They are marsupials that are considered "specialist eaters" since they only eat a certain type of leaf. While generalist feeders aren't as picky as the koala bears. I hope this helps!
Karate class, kicking high and ducking fast makes you much more flexible and you must pay respects to those ou fight with and be intune with yourself to do it right, in other words karate is the answer.