1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pepsi [2]
9 months ago
12

niobium metal becomes a superconductor when cooled below 9 k. its superconductivity is destroyed when the surface magnetic field

exceeds 0.100 t. in the absence of any external magnetic field, determine the maximum current a 2.60-mm-diameter niobium wire can carry and remain superconducting
Physics
1 answer:
Furkat [3]9 months ago
5 0

Niobium wire with a 2.60 mm diameter has a maximum current capacity of 500 A while still remaining superconducting.

<h3>Describe the present.</h3>

Current is the rate at which charge passes from one point on a circuit to another. In a circuit, a significant current flows when several coulombs or charge pass over the cross section of a wire. When the charge carriers are firmly packed inside the wire, high currents can be generated at low speeds.

<h3>What do current and electron actually mean?</h3>

Electron movement is referred to as electron current. The positive terminal receives electrons that are released by the negative terminal. Traditional current, usually referred to as just current, exhibits behavior consistent with positive charge carriers being the source of current flow. Regular current is received at the positive end and then flows to a negative terminal.

To know more about current visit:
brainly.com/question/15141911

#SPJ4

You might be interested in
A particle is moving along the x-axis so that its position at any time t is greater than and equal to 0 is given by x(t)=2te^-t?
erastovalidia [21]
For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left
6 0
3 years ago
Convert the speed of light 3.0x10^8 m/s to km/day
Aleksandr [31]

Answer: 2.592 \times 10^{8}km/day

1 m = 0.001 km\\ 1 s= 1.157\times10^{-5} days\\ 1 m/s = \frac {0.001}{1.157\times10^{-5}} km/day = 86.4 km/day \\ 3.0\times 10^{8} m/s = 3.0\times 10^{8} m/s \times \frac {86.4 km/day}{1m/s} =2.592 \times 10^{8}km/day



7 0
3 years ago
Read 2 more answers
A hot air balloon is moving vertically upwards at a velocity of 3m/s. A sandbag is dropped when the balloon reaches 150m. How lo
gregori [183]

This is a perfect opportunity to stuff all that data into the general equation for the height of an object that has some initial height, and some initial velocity, when it is dropped into free fall.

                       H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

 Height at any time 'T' after the drop =

                          (initial height) +

                                              (initial velocity) x (T) +
                                                                 (1/2) x (acceleration) x (T²) .

For the balloon problem ...

-- We have both directions involved here, so we have to define them:

     Upward  = the positive direction

                       Initial height = +150 m
                       Initial velocity = + 3 m/s

     Downward = the negative direction

                     Acceleration (of gravity) = -9.8 m/s²

Height when the bag hits the ground = 0 .

                 H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

                  
0    =  (150m) + (3m/s T) + (1/2 x -9.8 m/s² x T²)

                   -4.9 T²  +  3T  + 150  =  0

Use the quadratic equation:

                         T  =  (-1/9.8) [  -3 plus or minus √(9 + 2940)  ]

                             =  (-1/9.8) [  -3  plus or minus  54.305  ]

                             =  (-1/9.8) [ 51.305  or  -57.305 ]

                          T  =  -5.235 seconds    or    5.847 seconds .

(The first solution means that the path of the sandbag is part of
the same path that it would have had if it were launched from the
ground 5.235 seconds before it was actually dropped from balloon
while ascending.)

Concerning the maximum height ... I don't know right now any other
easy way to do that part without differentiating the big equation.
So I hope you've been introduced to a little bit of calculus.

                    H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

                  
H'(t)  =  v₀ + a T

The extremes of 'H' (height) correspond to points where h'(t) = 0 .

Set                                  v₀ + a T  =  0

                                      +3  -  9.8 T  =  0

Add 9.8 to each  side:   3               =  9.8 T

Divide each side by  9.8 :   T = 0.306 second

That's the time after the drop when the bag reaches its max altitude.

Oh gosh !  I could have found that without differentiating.

- The bag is released while moving UP at 3 m/s .

- Gravity adds 9.8 m/s of downward speed to that every second.
So the bag reaches the top of its arc, runs out of gas, and starts
falling, after
                       (3 / 9.8) = 0.306 second .

At the beginning of that time, it's moving up at 3 m/s.
At the end of that time, it's moving with zero vertical speed).
Average speed during that 0.306 second = (1/2) (3 + 0) =  1.5 m/s .

Distance climbed during that time = (average speed) x (time)

                                                           =  (1.5 m/s) x (0.306 sec)

                                                           =  0.459 meter  (hardly any at all)

     But it was already up there at 150 m when it was released.

It climbs an additional 0.459 meter, topping out at  150.459 m,
then turns and begins to plummet earthward, where it plummets
to its ultimate final 'plop' precisely  5.847 seconds after its release.  

We can only hope and pray that there's nobody standing at
Ground Zero at the instant of the plop.

I would indeed be remiss if were to neglect, in conclusion,
to express my profound gratitude for the bounty of 5 points
that I shall reap from this work.  The moldy crust and tepid
cloudy water have been delicious, and will not soon be forgotten.

6 0
3 years ago
Menciona un ejemplo de la vida cotidiana donde se apliquen las cuatro fuerzas fundamentales de la naturaleza.
Gekata [30.6K]
Yesterday was the day that we got canceled on it so we had a lot
4 0
2 years ago
A moving fan continues to move for a while even after switched off, why? ​
dem82 [27]

Answer:

due to the inertia of motion, the fan continues to move for some time even after switching it off.

4 0
2 years ago
Read 2 more answers
Other questions:
  • Phytoplankton would most likely be found _______.
    11·2 answers
  • The energy expenditure value of traveling by car is 3.6 MJ/passenger-kilometer. For one person making a trip of 1000 km, if a ga
    7·1 answer
  • PLEASE HELP!! PHYSICS QUESTION-DOES ANYONE KNOW HOW TO DO THIS WITH THE WORKING OUT?!?
    14·1 answer
  • Which literary device portrays a character's reflections?
    12·1 answer
  • I want to drive to Miami, which is 675 miles away. If my car gets 24 miles per gallon of gas costs $2.50 a gallon, how much woul
    8·2 answers
  • How are wavelength and frequency related for a wave moving at a constant speed?
    7·1 answer
  • Cho hệ thống thùng lắc có mô hình tại vị trí đang xét như hình vẽ
    10·2 answers
  • The amount of sea ice and permafrost have steadily decreased near Shishmaref, Alaska, over the last century. The loss of ice has
    9·1 answer
  • if the intensity of a person's voice is 4.6 x 10^-7 w/m^2 at a distance of 2.0 m, how much sound power does that person generate
    12·1 answer
  • A 1,103 kg car traveling at 18 m/s to the south collides with a 4,919 kg truck that is initially at rest at a stoplight. The car
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!