<span>First law of thermodynamics. This conservation law states that energy cannot be created or destroyed but can be changed from one form to another. In essence, energy is always conserved but can be converted from one form into another. Like when an engine burns fuel, it converts the energy stored in the fuel's chemical bonds into useful mechanical energy and then into heat, or more specifically, the melting ice cubes. Yeast breaks down maltose into glucose to produce alcohol and Co2 in the fermentation process. This is a prime example of the 1st law of thermodynamics. No form of usable energy is really lost; it only changes from one form to another</span>
Answer:
0.4113772 s
Explanation:
Given the following :
Mass of bullet (m1) = 8g = 0.008kg
Initial horizontal Velocity (u1) = 280m/s
Mass of block (m2) = 0.992kg
Maxumum distance (x) = 15cm = 0.15m
Recall;
Period (T) = 2π√(m/k)
According to the law of conservation of momentum : (inelastic Collison)
m1 * u1 = (m1 + m2) * v
Where v is the final Velocity of the colliding bodies
0.008 * 280 = (0.008 + 0.992) * v
2.24 = 1 * v
v = 2.24m/s
K. E = P. E
K. E = 0.5mv^2
P.E = 0.5kx^2
0.5(0.992 + 0.008)*2.24^2 = 0.5*k*(0.15)^2
0.5*1*5.0176 = 0.5*k*0.0225
2.5088 = 0.01125k
k = 2.5088 / 0.01125
k = 223.00444 N/m
Therefore,
Period (T) = 2π√(m/k)
T = 2π√(0.992+0.008) / 233.0444
T = 2π√0.0042910
T = 2π * 0.0655059
T = 0.4113772 s
Answer:
Option (D)
Explanation:
Terrestrial planets refers to those four planets that are nearest to the sun and that lies within the asteroid belt. These planets are mainly composed of rocks or other metal objects that have a hard and resistant surface on it. They have a metal core that is molten (liquid) in nature, and atmosphere is relatively less dense, and also various geological features are present on it like the crater, volcanoes which can be observed with the help of satellites. The average densities of these planets is about four times the density of water. For example, the density of water is 1 g/cm³, whereas the density of earth is 5.5 g/cm³.
Thus, the correct answer is option (D).
The particles always move parallel and perpendicular to the waves. The waves which are in the water moves a circle. Both up and down and back and forth.
Good luck :)