The amount of lines of symmetry of a shape is equal to the number of sides that shape has.
A heptagon has 7 sides, so, there are 7 lines of symmetry.
Best of Luck!
Answer:
*answerness*
Step-by-step explanation:
*answerness*
Let us assume the width of the rectangle = w
Let us assume the length of the rectangle = l
Then
l = 2w
Also
Perimeter of the rectangle = 2 (l + w)
24 = 2 (2w + w)
24 = 2 (3w)
24 = 6w
w = 24/6
= 4 inches
Now
The length of the rectangle = 2w
= 2 * 4 inches
= 8 inches
So the length of the rectangle is 8 inches and the width is 4 inches.
Answer:
Step-by-step explanation:
False
The <em>second order</em> polynomial that involves the variable <em>x</em> (border inside the rectangle) and associated to the <em>unshaded</em> area is x² - 62 · x + 232 = 0.
<h3>How to derive an expression for the area of an unshaded region of a rectangle</h3>
The area of a rectangle (<em>A</em>), in square inches, is equal to the product of its width (<em>w</em>), in inches, and its height (<em>h</em>), in inches. According to the figure, we have two <em>proportional</em> rectangles and we need to derive an expression that describes the value of the <em>unshaded</em> area.
If we know that <em>A =</em> 648 in², <em>w =</em> 22 - x and <em>h =</em> 40 - x, then the expression is derived below:
<em>A = w · h</em>
(22 - x) · (40 - x) = 648
40 · (22 - x) - x · (22 - x) = 648
880 - 40 · x - 22 · x + x² = 648
x² - 62 · x + 232 = 0
The <em>second order</em> polynomial that involves the variable <em>x</em> (border inside the rectangle) and associated to the <em>unshaded</em> area is x² - 62 · x + 232 = 0. 
To learn more on polynomials, we kindly invite to check this verified question: brainly.com/question/11536910