Q is 150. Supplementary angles must add to equal 180
No solution of the system of equations y = -2x + 5 and -5y = 10x + 20 ⇒ 2nd answer
Step-by-step explanation:
Let us revise the types of solutions of a system of linear equations
- One solution
- No solution when the coefficients of x and y in the two equations are equal and the numerical terms are different
- Infinitely many solutions when the coefficients of x , y and the numerical terms are equal in the two equations
∵ y = -2x + 5
- Add 2x to both sides
∴ 2x + y = 5 ⇒ (1)
∵ -5y = 10x + 20
- Subtract 10x from both sides
∴ -10x - 5y = 20
- Divide both sides by -5
∴ 2x + y = -4 ⇒ (2)
∵ The coefficient of x in equation (1) is 2
∵ The coefficient of x in equation (2) is 2
∴ The coefficients of x in the two equations are equal
∵ The coefficient of y in equation (1) is 1
∵ The coefficient of y in equation (2) is 1
∴ The coefficients of y in the two equations are equal
∵ The numerical term in equation (1) is 5
∵ The numerical term in equation (2) is -4
∴ The numerical terms are different
From the 2nd rule above
∴ No solution of the system of equations
No solution of the system of equations y = -2x + 5 and -5y = 10x + 20
Learn more:
You can learn more about the system of equations in brainly.com/question/6075514
#LearnwithBrainly
Answer:
b
Step-by-step explanation:
bbbbbbbbbbbbbbbbbbbbbbbbbb
You can try finding the roots of the given quadratic equation to get to the solution of the equation.
There are two solutions to the given quadratic equation

<h3>How to find the roots of a quadratic equation?</h3>
Suppose that the given quadratic equation is 
Then its roots are given as:

<h3>How to find the solution to the given equation?</h3>
First we will convert it in the aforesaid standard form.

Thus, we have
a = 1. b = -114, c = 23
Using the formula for getting the roots of a quadratic equation,

Thus, there are two solutions to the given quadratic equation

Learn more here about quadratic equations here:
brainly.com/question/3358603