Initial velocity (u) = 2 m/s
Acceleration (a) = 10 m/s^2
Time taken (t) = 4 s
Let the final velocity be v.
By using the equation,
v = u + at, we get
or, v = 2 + 10 × 4
or, v = 2 + 40
or, v = 42
The final velocity is 42 m/s.
On an incline, the force causing the ball to move downwards would be gravity. Additionally, the component of gravity causing this ball to move downwards would be mgsintheta.
Hope this helps!
Answer:
1027 N/C
3.42 x 10⁻⁶ T
Explanation:
I = Intensity of electromagnetic field = 1400 W/m²
E₀ = Maximum value of electric field
Intensity of electromagnetic field is given as
I = (0.5) ε₀ E₀² c
1400 = (0.5) (8.85 x 10⁻¹²) (3 x 10⁸) E₀²
E₀ = 1027 N/C
B₀ = maximum value of magnetic field
using the equation
E₀ = B₀ c
1027 = B₀ (3 x 10⁸)
B₀ = 3.42 x 10⁻⁶ T
Answer:

Explanation:
By Einstein's Equation of photoelectric effect we know that

here we know that
= energy of the photons incident on the metal
= minimum energy required to remove photons from metal
= kinetic energy of the electrons ejected out of the plate
now we know that it requires 351 nm wavelength of photons to just eject out the electrons
so we can say

here we know that

now we have

now by energy equation above when photon of 303 nm incident on the surface




