Answer:
c. 4 meters/second
Explanation:
The formula to calculate average speed is:

Answer:
Fossil Combustion Reactions
Explanation:
It's more efficient (I'll edit later)
Answer:
I. 0 m/s
II. 20 m/s
III. Part BC
Explanation:
I. Determination of the initial velocity.
From the diagram given above,
The motion of the car starts from the origin. This implies that the car start from rest and as such, the initial velocity of the car is 0 m/s
II. Determination of the maximum velocity attained.
From the diagram given above, we can see clearly that the maximum velocity is 20 m/s.
III. Determination of the part of the graph that represents zero acceleration.
It important that we know the meaning of zero acceleration.
Zero acceleration simply means the car is not accelerating. This can only be true when the car is moving with a constant velocity.
From the graph given above, the car has a constant velocity between B and C.
Therefore, part BC illustrates zero acceleration.
-- the big flash of light and heat coming out of the head
of a match when it gets hot enough;
-- the explosion of a tiny bit of gunpowder that can send
a bullet many miles;
-- the energy captured from a few drops of burning gasoline
that moves a car;
-- the energy in the carbohydrates you eat that is used
to move you around;
Answer:
300 m
Explanation:
The train accelerate from the rest so u = 0 m/sec
Final speed that is v = 80 m/sec
Time t = 30 sec
The distance traveled by first plane = 1200 m
We know the equation of motion
where s is distance a is acceleration and u is initial velocity
Using this equation for first plane 

As the acceleration is same for both the plane so a for second plane will be 2.67 
The another equation of motion is
using this equation for second plane 
s = 300 m