Answer:


Explanation:
a)At the base of the surface the Electric flux is easy to find, because the Electric Field is constant in magnitude and perpendicular to the flat surface:

The Flux is negative because the Electric field goes into the surface
b) The Gaussian surface in form of a hemisphere encloses no net charge. The Gauss law says that the Flux of the electric field is proportional to the net charge enclosed. At this case, the charge is zero, then the total Flux is zero too.

Then:

The Flux is positif because the Electric field goes out of the surface.
2.low orbit because any satellite in low orbit will encounter some of earths atmosphere it will slow down a bit and fall into a lower orbit
Answer: ratio = 3.14 × 10³⁵
Explanation:
From Newtons law of Universal Gravitation;
Every object in the universe is attracted to every other object
F = (Gm₁m₂)/r²
G = 6.67 X 10⁻¹¹ N-m²/kg²
M₁= mass of one object
M₂= mass of second object
r = distance from center of objects
q = charge = 3.2 x 10⁻¹⁹C.
- Calculating the gravitational force;
Fg = (Gm₁m₂)/r² = (Gm²)/r²
which is = (6.67×10⁻¹¹ × (6.64×10⁻²⁷)²) / r²
= (2.94 × 10⁻⁶³) / r²
- Calculating the electric force;
Fe = (Kq₁q₂) / r² = K q² / r² = (9×10⁹ × (3.2 × 10⁻¹⁹)² / r²
Fe = 9.22 × 10⁻²⁸ / r²
comparing the ratio of both forces we have;
Fe/Fg = (9.22×10⁻²⁸/r²) ÷ (2.94×10⁻⁶³/r²)
r² cancels from the above expression, which gives;
ratio as 3.14 × 10³⁵
Both momentum and kinetic energy are conserved in elastic collisions (assuming that this collision is perfectly elastic, meaning no net loss in kinetic energy)
To find the final velocity of the second ball you have to use the conversation of momentum:
*i is initial and f is final*
Δpi = Δpf
So the mass and velocity of each of the balls before and after the collision must be equal so
Let one ball be ball 1 and the other be ball 2
m₁ = 0.17kg
v₁i = 0.75 m/s
m₂ = 0.17kg
v₂i = 0.65 m/s
v₂f = 0.5
m₁v₁i + m₂v₂i = m₁v₁f + m₂v₂f
Since the mass of the balls are the same we can factor it out and get rid of the numbers below it so....
m(v₁i + v₂i) = m(v₁f + v₂f)
The masses now cancel because we factored them out on both sides so if we divide mass over to another side the value will cancel out so....
v₁i + v₂i = v₁f + v₂f
Now we want the final velocity of the second ball so we need v₂f
so...
(v₁i + v₂i) - v₁f = v₂f
Plug in the numbers now:
(0.75 + 0.65) - 0.5 = v₂f
v₂f = 0.9 m/s
Answer:
option A is correct
Explanation:
acceleration the time rate of change of velocity or speed so
a=Δv/t
Δv=vf-vi
Δv= final speed-initial speed
now a=final speed-initial speed/time