Answer:
Main Difference Between Mechanical and Electromagnetic waves
A wave is composed of some kind of disturbance that propagates. We can classify waves into many different types based on their properties. One of the properties of the waves depends on whether they need a medium to propagate or not. The primary difference between electromagnetic and mechanical waves is also based on this property. Mechanical waves need a medium, while electromagnetic waves do not need a medium to propagate. Electromagnetic waves can travel through a vacuum. The other differences between mechanical and electromagnetic waves are given below:
Electromagnetic waves can travel through a vacuum, that is an empty space, whereas mechanical waves cannot. They need a medium to travel such as water or air. Ripples in a pond are an example of mechanical waves whereas electromagnetic waves include light and radio signals, which can travel through the vacuum of space.
Mechanical waves can be classed as elastic waves because their transmission depends on the medium's (water, air etc.) elastic properties.
Electromagnetic waves are caused because of the varying magnetic and electric fields. They are produced by the vibration of the charged particles.
Because of these differences, the speed of each type of wave varies significantly. Electromagnetic waves travel at the speed of light but mechanical waves are far slower.
Have a wonderful day!
~Lillith of brainly~
The applied force is different for the two cases
The case A with a greater force involves the greatest momentum change
The case A involves the greatest force.
<h3>What is collision?</h3>
- This is the head-on impact between two object moving in opposite or same direction.
The initial momentum of the two ball is the same.
P = mv
where;
- m is the mass of each
- v is the initial velocity of each ball
Since the force applied by the arm is different, the final velocity of the balls before stopping will be different.
Thus, the final momentum of each ball will be different
The impulse experienced by each ball is different since impulse is the change in momentum of the balls.
J = ΔP
The force applied by the rigid arm is greater than the force applied by the relaxed arm because the force applied by the rigid arm will cause the ball to be brought to rest faster.
Thus, we can conclude the following;
- The applied force is different for the two cases
- The case A with a greater force involves the greatest momentum change
- The case A involves the greatest force.
Learn more about impulse here: brainly.com/question/25700778
8/4 = y/y-x
8y - 8x = 4y
y = 2x
y = 2 x 4
y = 8
Hope this helps
kinetic energy is Movement energy
think of it like the Xbox Kinect
The x -component of the object's acceleration is 2 m/s².
<h3>What's the resultant force along x- direction?</h3>
- Forces along x axis direction are as follows
- 4N along +x axis, so it's taken as +4 N
- 2N along -x axis , so it's taken as -2N.
- Resultant force along x direction = 4N - 2N = 2 N which is along + ve x direction.
<h3>What's the acceleration along x axis direction?</h3>
- As per Newton's second law, Force = mass × acceleration of the object
- Force along x axis= mass × acceleration along x axis= 2N
- Acceleration = 2/ mass = 2/1 = 2 m/s²
Thus, we can conclude that the acceleration along x axis is 2 m/s².
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: The forces in (Figure 1) are acting on a 1.0 kg object. What is ax, the x-component of the object's acceleration?
Learn more about the acceleration here:
brainly.com/question/460763
#SPJ1