Answer:
<em>The gravitational potential energy of the parachutist is 3,528,000 J</em>
Explanation:
<u>Gravitational Potential Energy
</u>
It's the energy stored in an object because of its height in a gravitational field.
It can be calculated with the equation:
U=m.g.h
Where:
m = mass of the object
h = height with respect to a fixed reference
g = acceleration of gravity, usually taken as
.
The parachutist has a mass of m=120 kg and he jumps at a height of h= 3,000 m. Computing the gravitational potential energy:
U = 120 * 3,000 * 9.8
U = 3,528,000 J
The gravitational potential energy of the parachutist is 3,528,000 J
Communication,Mapping,transportation,and space exploration
The first runner because it is very clear that accelarition depends on the time and we know that the time in this case is pretty simple
The answer would be 0.40m. you are finding how far the distance is between 10 and 50
Answer:
V1 =8.1 m/s
Explanation:
height at highest point (h2) = 4.1 m
height at lowest point (h1) = 0.8 m
acceleration due to gravity (g) = 9.8 m/s^{2}
from conservation of energy, the total energy at the lowest point will be the same as the total energy at the highest point. therefore
mgh1 +
= mgh2 + 
where
- speed at highest point = V2
- speed at lowest point = V1
- mass of the girl and swing = m
- at the highest point, the speed is minimum (V1 = 0)
- at the lowest point the speed is maximum (V2 is the maximum speed)
- therefore the equation becomes mgh1 +
= mgh2
m(gh1 +
) = m(gh2)
gh1 +
= gh2
V1 = 
now we can substitute all required values into the equation above.
V1 = 
V1 = 
V1 =8.1 m/s