Solve the System of Equations -4x + 9y = 14 12x - 10y = - 8
2 answers:
Answer:
(1, 2)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
-4x + 9y = 14
12x - 10y = -8
<u>Step 2: Rewrite Systems</u>
-4x + 9y = 14
- Multiply everything by 3: -12x + 27y = 42
<u>Step 3: Redefine Systems</u>
-12x + 27y = 42
12x - 10y = -8
<u>Step 4: Solve for </u><em><u>y</u></em>
<em>Elimination</em>
- Combine 2 equations: 17y = 34
- Divide 26 on both sides: y = 2
<u>Step 5: Solve for </u><em><u>x</u></em>
- Define equation: 12x - 10y = -8
- Substitute in <em>y</em>: 12x - 10(2) = -8
- Multiply: 12x - 20 = -8
- Isolate <em>x</em> term: 12x = 12
- Isolate <em>x</em>: x = 1
Step-by-step explanation:
HERE,
two equation are,
●-4x+9y=14••••••••••••(equation I)
●12x-10y=-8•••••••••••(equation II)
First multiplying 3 in equation I
we get,
=••(equation III)
Then,
we combine the equationii and equation III.
we get that,
Then,
put the value of y in equation II.
WE get,
So,
<em>solution</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>equation</em><em> </em><em>(</em><em>-4x</em><em>+</em><em>9y</em><em>)</em><em> </em><em>and</em><em> </em><em>(</em><em>12x-10y</em><em>=</em><em>-8</em><em>)</em> <em>is</em><em> </em><em><u>(</u></em><em><u>1</u></em><em><u>,</u></em><em><u>2</u></em><em><u>)</u></em>
You might be interested in
When multiplying two powers with the same base (which is 5 in this case) you can simply add the exponents. - 8 + 4 = - 4. The answer is
Answer:
1.D
2.a
3.a
4.d
5.b
6.b
7.b
Step-by-step explanation:
Answer:
8-4(-x+5)
8 +4x -20
4x -12
Step-by-step explanation:
8-4(-x+5)
8 +4x -20
4x -12
Answer:
second
Step-by-step explanation: